Basic Search Algorithms

Searching for data is a fundamental computer programming task and one that has been studied for many years. This chapter looks at just one aspect of the search problem – searching for a given value in a list.
There are two ways to search for data in a list – sequential, or linear search, and binary search. A sequential search is used when the items in a list are in random order; a binary search is used when the items in a list are in sorted order. Binary search is the more efficient algorithm, but you also have to take into account the extra time it takes to sort the data set before being able to search for an element.

Sequential Search

The most obvious type of search for data in a list is to begin at the first element and move through each element in the list until you find the element you are searching for or you reach the end of the list. This is called a sequential search. It is also sometimes called a linear search. It is an example of a brute force search technique, where potentially every element in the data structure is visited on the way to a solution.
A sequential search is very easy to implement. Simply start a loop at the beginning of the list and compare each element to the data you are searching for. If you find a match, the search is over. If you get to the end of the list without generating a match, then the data searched for is not in the list.
Here is a method for performing sequential search:
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return true;
      }
   }
   return false;
}

If the data argument is found in the array, the method returns true immediately. If the method gets to the end of the array without finding a match, the method returns false.

Here is a program to test our sequential search method, including a method to make it easy to display the array's contents:

function dispArr(arr) {
   putstr(arr[0] + " ");
   for (var i = 1; i < arr.length; ++i) {
      putstr(arr[i] + " ");
      if (i % 10 == 0) {
         putstr("\n");
      }
   }
}

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
putstr("Enter a number to search for: ");
var num = readline();
print();
if (seqSearch(nums, num)) {
   print(num + " is in the array.");
}
else {
   print(num + " is not in the array.");
}
print();
dispArr(nums);

An array is created with random numbers in the range of 0 to 100. The user is prompted to enter a value and the value is searched for and the result is displayed. Finally, the complete array is displayed as proof of the validity of the method's return value. Here is a sample run of the program:

Enter a number to search for: 23

23 is in the array.

13 95 72 100 94 90 29 0 66 2 29 
42 20 69 50 49 100 34 71 4 26 
85 25 5 45 67 16 73 64 58 53 
66 73 46 55 64 4 84 62 45 99 
77 62 47 52 96 16 97 79 55 94 
88 54 60 40 87 81 56 22 30 91 
99 90 23 18 33 100 63 62 46 6 
10 5 25 48 9 8 95 33 82 32 
56 23 47 36 88 84 33 4 73 99 
60 23 63 86 51 87 63 54 62

We can also write the sequential search method so that it returns the position where a match was found. Here is that definition of seqSearch():

function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return i;
      }
   }
   return -1;
}

Notice that if the element searched for is not found, the method returns -1. This is the best value to return for the method since an array element cannot be stored in position -1.

Here is a program that uses this second definition of seqSearch():

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
putstr("Enter a number to search for: ");
var num = readline();
print();
var position = seqSearch(nums, num);
if (position > -1) {
   print(num + " is in the array at position " + position);
}
else {
   print(num + " is not in the array.");
}
print();
dispArr(nums);

Here is one run of the program:

Enter a number to search for: 22

22 is in the array at position 35

35 36 38 50 24 81 78 43 26 26 89 
88 39 1 56 92 17 77 53 36 73 
61 54 32 97 27 60 67 16 70 59 
4 76 7 38 22 87 30 42 91 79 
6 61 56 84 6 82 55 91 10 42 
37 46 4 85 37 18 27 76 29 2 
76 46 87 16 1 78 6 43 72 2 
51 65 70 91 73 67 1 57 53 31 
16 64 89 84 76 91 15 39 38 3 
19 66 44 97 29 6 1 72 62

Searching for Minimum and Maximum Values

Computer programming problems often involve searching for minimum and maximum values. In an sorted data structure, searching for these values is a trivial task. Searching an unsorted data structure, on the other hand, is a little more challenging.
Let's start by determining how we would search an array for a minimum value. Here is an algorithm:
1. Assign the first element of the array to a variable as the minimum value.
2. Begin looping through the array, starting with the second element, comparing each element with the current minimum value.
3. If the current element has a lesser value than the current minimum value, assign the current element as the new minimum value.
4. Move to the next element and repeat step 3.
5. When the end of the array is reached, the minimum value is stored in the variable.
This algorithm can be easily transformed into a JavaScript method:

function findMin(arr) {
   var min = arr[0];
   for (var i = 1; i < arr.length; ++i) {
      if (arr[i] < min) {
         min = arr[i];
      }
   }
   return min;
}

The key point to notice about this method is that it begins with the second array element, since we are assigning the first array element as the current minimum value.

Let's test the function in a program:

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
var minValue = findMin(nums);
dispArr(nums);
print();
print("The minimum value is: " + minValue);

Here is the output from running the program:

89 30 25 32 72 70 51 42 25 24 53 
55 78 50 13 40 48 32 26 2 14 
33 45 72 56 44 21 88 27 68 15 
93 98 73 28 16 46 87 28 65 38 
67 16 85 63 23 69 64 91 9 70 
81 27 97 82 6 88 3 7 46 13 
11 64 31 26 38 28 13 17 69 90 
1 6 7 64 43 9 73 80 98 46 
27 22 87 49 83 6 39 42 51 54 
84 34 53 78 40 14 5 76 62 

The minimum value is: 1

The method for finding the maximum value works in a similar fashion. We assign the first element of the array as the maximum value and then loop through the rest of the array, comparing each element to the current maximum value, and assigning the current element as the maximum value if it's value is larger than the current maximum value. Here is the definition for the method:

function findMax(arr) {
   var max = arr[0];
   for (var i = 1; i < arr.length; ++i) {
      if (arr[i] > max) {
         max = arr[i];
      }
   }
   return max;
}
Here is a program that finds both the minimum value and the maximum value of an array:

var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
var minValue = findMin(nums);
dispArr(nums);
print();
print();
print("The minimum value is: " + minValue);
var maxValue = findMax(nums);
print();
print("The maximum value is: " + maxValue);

And the output from this program is:

26 94 40 40 80 85 74 6 6 87 56 
91 86 21 79 72 77 71 99 45 5 
5 35 49 38 10 97 39 14 62 91 
42 7 31 94 38 28 6 76 78 94 
30 47 74 20 98 5 68 33 32 29 
93 18 67 8 57 85 66 49 54 28 
17 42 75 67 59 69 6 35 86 45 
62 82 48 85 30 87 99 46 51 47 
71 72 36 54 77 19 11 52 81 52 
41 16 70 55 97 88 92 2 77 

The minimum value is: 2

The maximum value is: 99

Improving Sequential Search Using Self-Organizing Data

The fastest successful sequential searches occur when the data element being searched for is located at the beginning of the data set. You can ensure that a successfully located data item is stored at the beginning of a data set by moving it there after it has been found in a search.
The concept behind this strategy is that we can minimize search times by locating items that are frequently searched for at the beginning of a data set. After many searches, the most frequently searched items will be moved from wherever they were stored to the front of the data set. This is an example of self-organized data – data that is organized not by the programmer before the program is executed, but by the program itself while the program is running.
It makes sense to allow your data to organize in this way since the data being searched most likely follow the "80-20" rule, meaning that eighty percent of the searches made on a data set are searching for just twenty percent of the data in the data set. Self-organization will eventually put that twenty percent at the beginning of the data set, where a simple sequential search will find them quickly.
Probability distributions such as the "80-20" rule are called Pareto distributions, named for Vlifredo Pareto, who discovered these distributions by studying the spread of income and wealth in the late nineteenth century. See Knuth (1998, pp. 399-401) for more information on probability distributions in data sets.
We can modify our seqSearch() method to include self-organization quite easily. Here is a first attempt at the method:

function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         if (i > 0) {
            swap(i,i-1);
         } 
         return true;
      }
   }
   return false;
}

The method uses a swap() function to exchange the found element with the element currently being stored in position 0. Here is the definition for swap():

function swap(arr, index, index1) {
   temp = arr[index];
   arr[index] = arr[index1];
   arr[index1] = temp;
}

Notice that the method checks to make sure that if an element is found it is not already at position 0.

You'll notice that using this technique, which is similar to how data is sorted with the bubble sort algorithm, the most frequently accessed elements will eventually work their way up to the front of the data set. This technique also guarantees that if an element is already at the beginning of the data set it won't get moved back down.

Another way we can write the seqSearch() method with self-organizing data is to move a found item to the front of the data set, though we wouldn't want to exchange an element if it is already close to the front. To achieve this goal, we can swap found elements only if they are located some specified distance away from the beginning of the data set. We only have to determine what is considered to be a far enough distance away from the beginning of the data set to warrant moving it closer to the beginning. Following the "80-20" rule again, we can make a rule that states that a data element is relocated to the beginning of the data set only if its location lies outside the first twenty percent of the items in the data set. 

Here is the definition for our re-defined seqSearch() method:

function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data && i > (arr.length * 0.2)) {
         swap(arr,i,0);
         return true;
      }
      else if (arr[i] == data) {
         return true;
      }
   }
   return false;
}

Here is a program that tests this definition out on a small data set of ten elements:

var nums = [];
for (var i = 0; i < 10; ++i) {
   nums[i] = Math.floor(Math.random() * 11);
}
dispArr(nums);
print();
putstr("Enter a value to search for: ");
var val = parseInt(readline());
if (seqSearch(nums, val)) {
   print("Found element: ");
   print();
   dispArr(nums);
}
else {
   print(val + " is not in array.");
}


Here are the results of a sample run of this program:

4 5 1 8 10 1 3 10 0 1 
Enter a value to search for: 3 

Found element: 

3 5 1 8 10 1 4 10 0 1

Let's run the program again and search for an element closer to the front of the data set:

4 2 9 5 0 6 9 4 5 6
Enter a value to search for: 2
Found element:

4 2 9 5 0 6 9 4 5 6

Because the element is so close to the front of the data set, the program does not change its position.

The searches we have discussed so far require that the data being search be kept in an unordered sequence. We can speed up searches on large data sets significantly, though, if we first sort the data set before performing a search. In the next section, we discuss an algorithm for searching ordered data – the binary search.

Binary Search

When the data you are searching through are in sorted order, you can search for data using a more efficient algorithm than the sequential search algorithm – the binary search. 
To understand how binary search works, imagine you are playing a number guessing game where the possible number is between one and one hundred and you have to guess the number as chosen by a friend. According to the rules, for every guess you make, your friend has three responses: 1) the guess is correct; 2) your guess is too high; or 3) your guess is too low. Following these rules, the best strategy is to choose the number fifty as your first guess. If that guess is too high, choose twenty-five. If fifty is too low, you should choose seventy-five. For each guess, you choose a midpoint by adjusting the lower range or the upper range of the numbers (depending on whether your guess is too low or too high). This midpoint becomes your new guess. As long as you follow this strategy, you will guess the correct number in the minimum possible number of guesses. Figure x.1 demonstrates how this strategy works if the number to be guessed is eighty-two.
We can implement this strategy as an algorithm – the binary search algorithm. To use this algorithm, we first have to be sure the data set we are searching is sorted, preferably in ascending order. The first step of the algorithm is to set the lower and upper bounds of the search. At the beginning of the search, the lower bound is the first element of the data set and the upper bound is the last element of the data set. The next step is to calculate the midpoint of the data set by adding the values for the lower and upper bounds and dividing by two. The data set element stored at this value is compared to the data being searched for. If they are the same, the data has been found and the algorithm stops. If the searched-for data is less than the midpoint value, a new upper bound is calculated by subtracting one from the midpoint. If the searched-for data is greater than the midpoint, a new lower bound is calculated by adding one to the midpoint. The algorithm iterates until the lower bound equals the upper bound, which indicates the data set has been thoroughly searched and the searched-for data has not been found. If this occurs, the algorithm returns -1, indicating failure of the search.
Here is the JavaScript definition for a binary search method:
function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
      var mid = Math.floor((upperBound + lowerBound) / 2);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

Here is a program to test the method:
var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
insertionsort(nums);
dispArr(nums);
print();
putstr("Enter a value to search for: ");
var val = parseInt(readline());
var retVal = binSearch(nums, val);
if (retVal >= 0) {
   print("Found " + val + " at position " + retVal);
}
else {
   print(val + " is not in array.");
}

The output from one run of the program is:
0 1 2 3 5 7 7 8 8 9 10 
11 11 13 13 13 14 14 14 15 15 
18 18 19 19 19 19 20 20 20 21 
22 22 22 23 23 24 25 26 26 29 
31 31 33 37 37 37 38 38 43 44 
44 45 48 48 49 51 52 53 53 58 
59 60 61 61 62 63 64 65 68 69 
70 72 72 74 75 77 77 79 79 79 
83 83 84 84 86 86 86 91 92 93 
93 93 94 95 96 96 97 98 100
Enter a value to search for: 37
Found 37 at position 45	

It might be interesting to watch the method as it works through the search space looking for the data value specified, so let's add a statement to the binSearch() method that displays the midpoint each time it is recalculated:

function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
      var mid = Math.floor((upperBound + lowerBound) / 2);
      print("Current midpoint: " + mid);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

Now let's run the program again:

0 0 2 3 5 6 7 7 7 10 11 
14 14 15 16 18 18 19 20 20 21 
21 21 22 23 24 26 26 27 28 28 
30 31 32 32 32 32 33 34 35 36 
36 37 37 38 38 39 41 41 41 42 
43 44 47 47 50 51 52 53 56 58 
59 59 60 62 65 66 66 67 67 67 
68 68 68 69 70 74 74 76 76 77 
78 79 79 81 81 81 82 82 87 87 
87 87 92 93 95 97 98 99 100 
Enter a value to search for: 82 
Current midpoint: 49
Current midpoint: 74
Current midpoint: 87
Found 82 at position 87

From this output, we see that the original midpoint was 49. That's too low since we are searching for 82, so the next midpoint is calculated to be 74. That is still too low, so a new midpoint is calculated, 87, and voila, the midpoint actually holds the element we are searching for.

Counting Occurrences 

When the binSearch() method finds an element, if there are other occurrences of the same element in the data set, the method will be positioned in the immediate vicinity of any other elements. In other words, other occurrences of the same elements will either be immediately to the left of the found element's position, or immediately to the right of the found element's position.
If this fact isn't immediately apparent to you, run the binSearch() method several times and take note of the position returned by the method. Here's an example of a sample run from earlier in this chapter:
0 1 2 3 5 7 7 8 8 9 10 
11 11 13 13 13 14 14 14 15 15 
18 18 19 19 19 19 20 20 20 21 
22 22 22 23 23 24 25 26 26 29 
31 31 33 37 37 37 38 38 43 44 
44 45 48 48 49 51 52 53 53 58 
59 60 61 61 62 63 64 65 68 69 
70 72 72 74 75 77 77 79 79 79 
83 83 84 84 86 86 86 91 92 93 
93 93 94 95 96 96 97 98 100
Enter a value to search for: 37
Found 37 at position 45

If you actually count the position of each element, the number 37 found by the method is the one that is in the middle of the three occurrences of 37. That is just the nature of how the binSearch() method works. 
So what does a method that counts the occurrences of elements in a data set need to do to make sure that it counts all the occurrences? The easiest solution is to write two loops that move both down (or to the left of) the data set, counting occurrences of the found element, and up (or the right of) the data set. Here is the definition of our count() method:

function count(arr, data) {
   var count = 0;
   var position = binSearch(arr, data);
   if (position > -1) {
      ++count;
      for (var i = position-1; i > 0; --i) {
         if (arr[i] == data) {
            ++count;
         }
         else {
            break;
         }
      }
      for (var i = position+1; i < arr.length; ++i) {
         if (arr[i] == data) {
            ++count;
         }
         else {
            break;
         }
      }
   }
   return count;
}

The method starts by calling the binSearch() method to search for the specified element. If the element is found in the data set, then it begins counting occurrences by calling two for loops. The first for loop works its way down the array, counting occurrences of the found element, stopping when the loop gets to the first element of the array, and the second for loop works its way up the array, stopping when it gets to the last element of the array. Here is how we can use count() in a program:
var nums = [];
for (var i = 0; i < 100; ++i) {
   nums[i] = Math.floor(Math.random() * 101);
}
insertionsort(nums);
dispArr(nums);
print();
putstr("Enter a value to count: ");
var val = parseInt(readline());
var retVal = count(nums, val);
print("Found " + retVal + " occurrences of " + val + ".");

Here is a sample run of the program:

0 1 3 5 6 8 8 9 10 10 10 
12 12 13 15 18 18 18 20 21 21 
22 23 24 24 24 25 27 27 30 30 
30 31 32 35 35 35 36 37 40 40 
41 42 42 44 44 45 45 46 47 48 
51 52 55 56 56 56 57 58 59 60 
61 61 61 63 64 66 67 69 69 70 
70 72 72 73 74 74 75 77 78 78 
78 78 82 82 83 84 87 88 92 92 
93 94 94 96 97 99 99 99 100 
Enter a value to count: 45
Found 2 occurrences of 45.

Here is another sample run:
0 1 1 2 2 3 6 7 7 7 7 
8 8 8 11 11 11 11 11 12 14 
15 17 18 18 18 19 19 23 25 27 
28 29 30 30 31 32 32 32 33 36 
36 37 37 38 38 39 43 43 43 45 
47 48 48 48 49 50 53 55 55 55 
59 59 60 62 65 66 67 67 71 72 
73 73 75 76 77 79 79 79 79 83 
85 85 87 88 89 92 92 93 93 93 
94 94 94 95 96 97 98 98 99 
Enter a value to count: 56
Found 0 occurrences of 56.

Searching Textual Data

Up to this point, all of our searches have been conducted on numeric data. We can also use the algorithms discussed in this chapter with textual data. First, let's define the data set we are going to use:
The nationalism of Hamilton was undemocratic. The democracy of Jefferson
was, in the beginning, provincial. The historic mission of uniting
nationalism and democracy was in the course of time given to new leaders
from a region beyond the mountains, peopled by men and women from all
sections and free from those state traditions which ran back to the
early days of colonization. The voice of the democratic nationalism
nourished in the West was heard when Clay of Kentucky advocated his
American system of protection for industries; when Jackson of Tennessee
condemned nullification in a ringing proclamation that has taken its
place among the great American state papers; and when Lincoln of
Illinois, in a fateful hour, called upon a bewildered people to meet the
supreme test whether this was a nation destined to survive or to perish.
And it will be remembered that Lincoln's party chose for its banner that
earlier device--Republican--which Jefferson had made a sign of power.
The "rail splitter" from Illinois united the nationalism of Hamilton
with the democracy of Jefferson, and his appeal was clothed in the
simple language of the people, not in the sonorous rhetoric which
Webster learned in the schools.

This paragraph of text was taken from the big.txt file found on Peter Norvig's web site (norvig.com). This file is stored in a text file (words.txt) that is located in the same directory as the js interpreter.
To read the file into a program, we need just one line of code:
var words = read("words.txt").split(" ");
This line stores the text in an array by reading in the text from the file - read("words.txt")- and then breaking the file up into words using the split() method, which uses the space between each word as the delimiter. This code is not perfect because the punctuation is left in the file and is stored with the word it is closest to, but it will suffice for our purposes.
Once the file is stored in an array, we can begin searching through the array to find words. Let's begin with a sequential search and search for the word "rhetoric", which is in the paragraph close to the end. Let's also time the search so we can compare it with a binary search. Here is the code:
function seqSearch(arr, data) {
   for (var i = 0; i < arr.length; ++i) {
      if (arr[i] == data) {
         return i;
      }
   }
   return -1;
}

var words = read("words.txt").split(" ");
var word = "rhetoric";
var start = new Date().getTime();
var position = seqSearch(words, word);
var stop = new Date().getTime();
var elapsed = stop - start;
if (position >= 0) {
   print("Found " + word + " at position " + position + ".");
   print("Sequential search took " + elapsed + " milliseconds.");
}
else {
   print(word + " is not in the file.");
}

The output from this program is:
Found rhetoric at position 174.	
Sequential search took 0 milliseconds.

Even though binary search is faster, we won't be able to measure any difference between binSearch() and seqSearch(), but we will run it anyway just to ensure that binary search works with textual data. Here is the code and the output:

function binSearch(arr, data) {
   var upperBound = arr.length-1;
   var lowerBound = 0;
   while (lowerBound <= upperBound) {
      var mid = Math.floor((upperBound + lowerBound) / 2);
      if (arr[mid] < data) {
         lowerBound = mid + 1;
      }
      else if (arr[mid] > data) {
         upperBound = mid - 1;
      }
      else {
         return mid;
      }
   }
   return -1;
}

function insertionsort(arr) {
   var temp, inner;
   for (var outer = 1; outer <= arr.length-1; ++outer) {
      temp = arr[outer];
      inner = outer;
      while (inner > 0 && (arr[inner-1] >= temp)) {
         arr[inner] = arr[inner-1];
         --inner;
      }
      arr[inner] = temp;
   }
}

var words = read("words.txt").split(" ");
insertionsort(words);
var word = "rhetoric";
var start = new Date().getTime();
var position = binSearch(words, word);
var stop = new Date().getTime();
var elapsed = stop - start;
if (position >= 0) {
   print("Found " + word + " at position " + position + ".");
   print("Binary search took " + elapsed + " milliseconds.");
}
else {
   print(word + " is not in the file.");
}

Found rhetoric at position 124.
Binary search took 0 milliseconds.

To get a better sense of the difference between sequential search and binary search on text files, we need a much larger text file. One such file is the ISpell word list, which can be found at http://wordlist.sourceforge.net. This file is 96K in size as compared to the 1K size of the file we used earlier. There are approximately 6750 words in the list. On this file, sequential search took 1 millisecond to find the word "novelize", which is about midway through the word list, and the same algorithm took 1 millisecond to find "zeroizing," the last word in the list. Using binary search, searching for both "novelizing" and "zeroizing" took 0 milliseconds.

Exercises

1. The sequential search algorithm always finds the first occurrence of an element in a data set. Rewrite the algorithm so that the last occurrence of an element is returned.
2. Describe what happens when you run the binary search method on an unordered data set.
3. Compare the time it takes to perform a sequential search with the total time it takes to both sort a data set using insertion sort and perform a binary search on the data set. What are your results?
4. [bookmark: _GoBack]Create an algorithm that finds the nth smallest element in a data set. Test your algorithm with a data set of at least 1000 elements. Test on both numbers and text.
