JavaServer Pages™
Specification

Version 2.0

please send comments to jsp-spec-comments(@eng.sun.com

Final Release - November 24, 2003 Mark ROth
Eduardo Pelegri-Llopart

$
% 4150 Network Circle
% ® Santa Clara, CA 95054, USA

microsystems 50 960-1300 fax: 650 969-9131
We make the net work.

JavaServer Pages™ Specification (* Specification”)
Version: 2.0

Status: FCS

Release: November 24, 2003

Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you afully-paid, non-
exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under the Sun’s applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation, which shall be understood to include devel oping applicationsintended
to run on an implementation of the Specification provided that such applications
do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any applicable
copyrights or patent rights it may have in the Specification to create and/or
distribute an Independent I|mplementation of the Specification that: (i) fully
implements the Spec(s) including all its required interfaces and functionality; (ii)
does not modify, subset, superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Javainterfaces, fields or
methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (iii) passes the TCK
(including satisfying the requirements of the applicable TCK Users Guide) for
such Specification. The foregoing license is expressly conditioned on your not
acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any
other particular “pass through” requirements in any license You grant concerning
the use of your Independent Implementation or products derived from it.
However, except with respect to implementations of the Specification (and
products derived from them) that satisfy limitations (i)-(iii) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees
any licenses under Sun’s applicable intellectual property rights; nor (b) authorize
your licensees to make any claims concerning their implementation’s compliance
with the Spec in question.

JavaServer Pages 2.0 Specification

For the purposes of this Agreement: “Independent Implementation” shall
mean an implementation of the Specification that neither derives from any of
Sun’s source code or binary code materials nor, except with an appropriate and
separate license from Sun, includes any of Sun’s source code or binary code
materials; and “Licensor Name Space” shall mean the public class or interface
declarations whose names begin with “java’, “javax”, “com.sun” or their
equivalents in any subsequent naming convention adopted by Sun through the
Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you
fail to comply with any material provision of or act outside the scope of the
licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade
names of Sun or Sun’slicensorsis granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, the Java Coffee Cup logo, JSP, and JavaServer Pages are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED “ASIS’. SUN MAKESNO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTSWILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER
RIGHTS. This document does not represent any commitment to release or
implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGESWILL BE INCORPORATED INTO NEW VERSIONS OF THE
SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR
CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such

JavaServer Pages 2.0 Specification

changes in the Specification will be governed by the then-current license for the
applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL
SUN OR ITSLICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY
OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or clean room implementation;
and/or (iii) any claimsthat later versions or rel eases of any Specification furnished
to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTSLEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government’s rights in the Specification and accompanying
documentation shall be only as set forth in this license; thisis in accordance with
48 C.FR. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you
may find in connection with your use of the Specification (“ Feedback”). To the
extent that you provide Sun with any Feedback, you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites
thereof.

(LF1#136181/Form | D#011801)

JavaServer Pages 2.0 Specification

Vi

JavaServer Pages 2.0 Specification

Contents

I 1
Preface XiX
AUS . .ot XXVII
OV VI .ttt e XXIX
The JavaServer Pages™ Technology XXiX
Basic Conceptsooot it XXX1
Users of JavaServer Pages XXX1ii
Part | ... e 1-1
JSP.1 CoreSyntaxand Semantics 1-3
JSP.1.1 WhatlsaJSPPage ... 1-3
JSP.1.1.1 Web Containers and Web Components 1-3
JSP.1.12 GeneratingHTML 1-4
JSP.1.1.3 Generating XML 1-4
JSP.1.1.4 Trandation and Execution Phases 1-4
JSP.1.15 VadidatingJSPpages 1-5
JSP.1.16 EventsinJSPPages 1-6
JSP.1.1.7 JSPConfiguration Information 1-6
JSP.1.1.8 Naming Conventionsfor JSPFiles 1-6
JSP.1.19 CompilingJSPPages 1-7
JSP.1.1.10 DebuggingJSPPages 1-8
JSP.1.2 WebApplications 1-8
JSP.1.2.1 Relative URL Specifications 1-9
JSP.1.3 Syntactic Elementsof aJSPPage 1-10
JSP.1.3.1 Elementsand TemplateData 1-10
JSP.1.32 ElementSyntax 1-10
JSP.133 StatandEndTags..................... 1-11
JSP.1.34 EmptyElements....................... 1-12
JSP.1.35 Attributevalues 1-12
JSP.1.3.6 Thejsp:attribute, jsp:body and jsp:element Elements
..................................... 1-12
JSP.1.3.7 Valid Namesfor Actions and Attributes 1-14
JSP.138 WhiteSpace ... 1-14
JSP.1.3.9 JSPDocuments 1-15

JavaServer Pages 2.0 Specification

Vi

viii

JSP.1.3.10 JSP Syntax Grammar 1-16
JSP.1.4 ErrorHandling i 1-33
JSP.1.4.1 Trandation Time Processing Errors 1-33
JSP.14.2 Request TimeProcessingErrors........... 1-33
JSP.1.43 UsingJSPsasErrorPages 1-34
JSP.15 Comments 1-34
JSP.1.5.1 Generating Commentsin Output to Client ...1-34
JSP.152 JSPComments 1-35
JSP.1.6 Quoting and Escape Conventions 1-35
JSP.1.7 Overal Semanticsof aJSPPage 1-37
JSP.1.8 ObJectS ..ot 1-38
JSP.1.8.1 ObjectsandVariables 1-38
JSP.1.82 ObjectsandScopes 1-39
JSP.1.83 ImplicitObjects. 1-40
JSP.1.8.4 ThepageContext Object 1-42
JSP.1.9 Template Text SemanticsS....................... 1-42
JSP.1.10 Directivesov i 1-42
JSP.1.10.1 ThepageDirective 1-43
JSP.1.10.2 Thetaglib Directive 1-49
JSP.1.10.3 TheincludeDirective 1-51
JSP.1.10.4 Implicitincludes 1-52
JSP.1.10.5 Including DatainJSPPages 1-52
JSP.1.10.6 Additional Directivesfor Tag Files 1-54
JSP.1.11 ELElements. ...t 1-54
JSP.1.12 ScriptingElements oo 1-54
JSP.1.12.1 Declarationsccouiiiiiiin.n. 1-55
JSP.1.122 Scriptlets ... 1-56
JSP.1.12.3 EXPresSionScuieueinennennennns 1-57
JSP.113 ACHONS . .ottt 1-58
JSP.1.14 Tag Attribute Interpretation Semantics 1-58
JSP.1.14.1 Request TimeAttributeVaues............ 1-58
JSP.1.14.2 TypeConversionsc.couu.n.. 1-59
JSP.2 ExpressionLanguage.............cooiiiinan.... 1-63
JSP.21 OVEIVIEW .. 1-63
JSP.2.2 TheExpression LanguageinJSP20.............. 1-64
JSP.221 Expressionsand AttributeValues 1-64
JSP.2.2.2 Expressionsand Template Text 1-65
JSP.223 ImplicitObjects. 1-66
JSP.2.24 Deactivating EL Evaluation 1-67

JavaServer Pages 2.0 Specification

JSP.2.25 Disabling Scripting Elements 1-67
JSP.2.3 General Syntax of the Expression Language 1-67
JSP.231 OVEIVIEW ...t 1-68
JSP.232 Literals ... 1-68
JSP.2.3.3 Errors, Warnings, Default Values 1-68
JSP.234 Opeaors"[]"and"." 1-68
JSP.2.35 ArithmeticOperators 1-69
JSP.2.36 Logica Operators.covvvvnvnnn.. 1-73
JSP.2.3.7 Empty Operator -empty A 1-73
JSP.2.3.8 Conditional Operator-A?B:C.......... 1-74
JSP.239 Parentheses.................. . 1-74
JSP.2.3.10 Operator Precedence 1-74
JSP.24 ResarvedWords 1-75
JSP.25 NamedVariables.............. 1-75
JSP.26 FUNCtions.......... ..o, 1-75
JSP.26.1 InvocationSyntax 1-76
JSP.2.6.2 TagLibrary Descriptor Information 1-76
JSP263 Example 1-77
JSP.26.4 SemantiCS............coiiiiiiiiiiinn 1-77
JSP.2.7 ImplicitObjects. 1-78
JSP.2.8 TypeConversionc.coueiiuinnenanan.. 1-78
JSP.281 ToCoerceaValueX toTypeY 1-78
JSP.282 CoeceAtoString 1-79
JSP.2.8.3 Coerce A to NumbertypeN 1-79
JSP.284 CoerceAtoCharacter 1-80
JSP.285 CoeceAtoBoolean 1-80
JSP.2.8.6 Coerce A to Any Other TypeT 1-80
JSP.29 Collected Syntaxccoviiiiiiiin.... 1-81
JSP.3 JSP Configuration 1-85
JSP.3.1 JSP Configuration Information inweb.xml 1-85
JSP.32 TaglibMap ... 1-85
JSP.3.3 JSPProperty Groups oo i 1-86
JSP.3.3.1 JSPProperty Groups 1-86
JSP.3.3.2 Deactivating EL Evaluation 1-87
JSP.3.3.3 Disabling Scripting Elements 1-89
JSP.3.34 Declaring PageEncodings 1-89
JSP.3.35 Defining Implicitincludes 1-90
JSP.3.3.6 Denoting XML Documents 1-91

JavaServer Pages 2.0 Specification

JSP.4 Internationalization ISSUES 1-93

JSP.4.1 PageCharacterEncoding 1-94
JSP.4.2 Response Character Encoding 1-95
JSP.4.3 Request Character Encoding 1-96
JSP.4.4 XML View Character Encoding 1-96
JSP.45 Delivering LocalizedContent 1-96
JSP.5 Standard ACLiONS i 1-99
JSP51 <jspiuseBean> ... 1-99
JSP5.2 <jspisetProperty> 1-105
JSP5.3 <jspigetProperty>....... 1-107
JSP5.4 <jspinclude> ... 1-109
JSP55 <jspiforward>. ... 1-110
JSP5.6 <jspparam> ... 1-112
JSP5.7 <jspiplugin> 1-112
JSP5.8 <jspiparams> 1-115
JSP59 <jspifallback> 1-115
JSP.5.10 <jspiattribute> 1-115
JSP.5.11 <jsprbody> ... 1-118
JSP.5.12 <jspiinvoke> ... 1-119
JSP5.121 BascUsage...............ccoovvnivn... 1-119
JSP.5.12.2 Storing Fragment Output 1-119
JSP.5.12.3 Providing a Fragment Accessto Variables . . 1-120
JSP.5.13 <jspidoBody>.......... ... 1-121
JSP5.14 <jspidement>....... 1-122
JSP5.15 <jgpitext> ... 1-124
JSP.5.16 <jspioutput™> 1-125
JSP.5.17 Other Standard Actions 1-129
JSP.6 JSPDocuments 1-131
JSP.6.1 Overview of JSP Documents and of XML Views . ..1-131
JSP.6.2 JSPDocumentsiiiiiiia... 1-133
JSP.6.21 Identifying JSP Documents. 1-133
JSP.6.2.2 Overview of Syntax of JSP Documents1-134
JSP.6.23 SemanticModel 1-135
JSP.6.2.4 JSP Document Validation 1-136
JSP.6.3 Syntactic Elementsin JSP Documents 1-136
JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries
1-136
JSP.6.3.2 ThejsprrootElement 1-137

JavaServer Pages 2.0 Specification

JSP.6.3.3 Thejspoutput Element 1-138

JSP.6.34 Thejsp:directive.pageElement 1-139
JSP.6.3.5 Thejsp:directive.iinclude Element 1-139
JSP.6.3.6 Additional Directive Elementsin Tag Files. 1-139
JSP.6.3.7 ScriptingElements 1-139
JSP.6.3.8 Other Standard Actions 1-140
JSP.6.39 TemplateContent..................... 1-140
JSP.6.3.10 Dynamic TemplateContent 1-141
JSP.6.4 Examplesof JSPDocuments 1-142
JSP.6.41 Example: A simple JSP document 1-142
JSP.6.4.2 Example: Generating Namespace-aware documents
1-143

JSP.6.43 Example: Generating non-XML documents 1-143
JSP.6.4.4 Example: Using Custom Actionsand Tag Files 1-

145

JSP.6.5 Possible Future Directions for JSP documents 1-146
JSP.6.5.1 Generating XML Content Natively 1-146
JSP.6.5.2 Schemaand XInclude Support 1-147
JSP.7 TagEXtensions i 1-149
JSP.7.1 Introduction...............ccoiiiiiiiiiinan. 1-149
JSP.7.11 GOAlS ... 1-150
JSP.7.12 OVEIVIEW ...t 1-151
JSP.7.1.3 ClassicTagHandlers 1-152
JSP.7.1.4 Simple Examples of Classic Tag Handlers . 1-152
JSP.7.15 SimpleTagHandlers 1-154
JSP.7.16 JSPFragments 1-156
JSP.7.1.7 Simple Examples of Smple Tag Handlers . 1-156
JSP.7.1.8 Attributes With DynamicNames 1-158
JSP.719 EventListeners....................... 1-158
JSP.7.2 Taglibraries..... ... 1-158
JSP.7.21 Packaged Tag Libraries 1-158
JSP.7.22 Locationof JavaClasses 1-159
JSP.7.23 TaglLibrary directive 1-159
JSP.7.3 TheTagLibrary Descriptor 1-160
JSP.7.3.1 Identifying Tag Library Descriptors 1-160
JSP.7.32 TLDresourcepath 1-161
JSP.7.3.3 TaglibMapinwebxml 1-161
JSP.7.3.4 Implicit Map Entriesfrom TLDs 1-162

JSP.7.35 Implicit Map Entries from the Container . .. 1-162

JavaServer Pages 2.0 Specification

Xii

JSP.7.3.6 Determining the TLD Resource Path 1-162
JSP.7.3.7 Trandation-TimeClassLoader 1-164
JSP.7.3.8 Assembling aWeb Application 1-164
JSP.7.39 Wdl-KnownURIs 1-165
JSP.7.3.10 Tag and Tag Library Extension Elements . .1-165
JSP.74 Vaidation.......... 1-169
JSP.7.4.1 Trandation-Time Mechanisms 1-169
JSP.7.42 Request-TimeErrors................... 1-170
JSP.7.5 Conventionsand Other Issues 1-171
JSP.75.1 How to Define New Implicit Objects 1-171
JSP.7.5.2 Accessto Vendor-Specific information1-172
JSP.75.3 CustomizingaTag Library 1-172
JSP.8 TagFiles 1-173
JSP.8.1 .. Overview 1-173
JSP.8.2 Syntaxof TagFiles 1-174
JSP.8.3 Semanticsof TagFiles........................ 1-174
JSP.8.4 PackagingTagFiles.......................... 1-176
JSP.84.1 Locationof TagFiles 1-176
JSP.8.42 PackaginginaJAR 1-176

JSP.8.4.3 Packaging Directly in aWeb Application ..1-177
JSP.8.44 Packaging as Precompiled Tag Handlers .. .1-178

JSP.85 TagFileDirectives................ccoiiiin.. 1-179
JSP.85.1 ThetagDirective...................... 1-179
JSP.8.5.2 The attribute Directive 1-182
JSP.85.3 ThevariableDirective.................. 1-183

JSP.8.6 TagFilesinXML Syntax 1-186

JSP.8.7 XML ViewofaTagFile 1-186

JSP.8.8 ImplicitObjects 1-186

JSP.8.9 Variable Synchronization...................... 1-188
JSP.8.9.1 Synchronization Points 1-189
JSP.8.9.2 Synchronization Examples 1-190

JSP.9 SCripting ..o 1-195

JSP9.1 Ovedl Structure 1-195
JSP9.1.1 VaidJSPPage 1-195
JSP.9.1.2 ReservedNames 1-196
JSP.9.1.3 Implementation Flexibility 1-196

JSP.9.2 DeclarationsSectionc.couin... 1-197

JSP.9.3 Initidlization Section 1-197

JavaServer Pages 2.0 Specification

JSP.9.4 ManSectioniiiiiiii 1-197
JSP941 TemplateData 1-197
JSP942 Scriptlets ... 1-198
JSP.9.43 EXPressionsceiiiiinnn 1-198
JSP.9.44 ACHONS.......... ... 1-198

JSP.1I0 XML View ... 1-201

JSP.10.1 XML View of aJSP Document, JSP Page or Tag File . . 1-

201
JSP.10.1.1 JSP Documents and Tag Filesin XML Syntax . 1-
201
JSP.10.1.2 JSPPagesor Tag Filesin JSP Syntax 1-202
JSP.10.1.3 JSPComments 1-203
JSP.10.1.4 ThepageDirective.................... 1-203
JSP.10.1.5 Thetaglib Directive 1-203
JSP.10.1.6 Theinclude Directive.................. 1-204
JSP.10.1.7 Declarations 1-204
JSP.10.1.8 Scriptlets ... 1-204
JSP.10.1.9 EXPressionsueuuiuaennn. 1-205
JSP.10.1.10 Standard and Custom Actions 1-205
JSP.10.1.11 Request-Time Attribute Expressions 1-205
JSP.10.1.12 Template Text and XML Elements 1-206
JSP.10.1.13 Thejsp:id Attribute 1-207
JSP.10.1.14 Thetag Directive 1-207
JSP.10.1.15 Theattribute Directive 1-207
JSP.10.1.16 Thevariable Directive 1-207

JSP.10.2 Validatingan XML View of aJSPpage.......... 1-208

JSP.10.3 Examples.o 1-208
JSP.10.31 A JSPdocument 1-208
JSP.10.3.2 A JSP page and its corresponding XML View . 1-

209
JSP.10.3.3 Clearing Out Default Namespace on Include 1-210
JSP.10.3.4 Taglib Direcive Adds to Global Namespace 1-211
JSP.10.3.5 Collective Application of Inclusion Semantics . 1-

211
Part 1. ... 2-1
JSP.11 JSPContainerouiiiiiiiiiiii 2-3
JSP.11.1 JSPPageModdel 2-3

JavaServer Pages 2.0 Specification

Xiii

Xiv

JSP.11.1.1 Protocol Seen by theWeb Server 2-3
JSP.11.2 JSP Page ImplementationClass. 2-5
JSP.11.21 APIContractsciiia.. 2-6
JSP.11.2.2 Reguest and Response Parameters 2-7
JSP.11.2.3 Omitting the extends Attribute 2-8
JSP.11.2.4 Using the extends Attribute 2-10
JSP.11.3 BUffering 2-11
JSP.11.4 Precompilation i, 2-12
JSP.11.4.1 Request Parameter Names 2-12
JSP.11.4.2 Precompilation Protocol 2-13
JSP.11.5 Debugging Requirements. 2-13
JSP.11.5.1 Line Number Mapping Guidelines 2-14
JSP.12 Core APl .. 2-17
JSP.12.1 JSP Page Implementation Object Contract 2-17
JSP.12.1.1 JspPage ... 2-17
JSP.12.1.2 HttpdspPage.o oo 2-19
JSP.12.1.3 JspFactory ... 2-20
JSP.12.1.4 JspEnginelnfo 2-22
JSP.12.2 ImplicitObjects 2-22
JSP.12.21 JspContextccoviiiiiiiiiin.n 2-22
JSP.12.22 PageContext 2-27
JSP.12.2.3 JspWriter ..o 2-34
JSP.12.24 ErrorData. 2-42
JSP.12.3 AnImplementation Example 2-43
JSP.12.4 EXCEPLioNSot 2-44
JSP.12.4.1 JspException 2-44
JSP.12.4.2 JspTagException 2-46
JSP.12.4.3 SkipPageException 2-47
JSP.13 TagExtenson APl 2-49
JSP.13.1 ClassicTagHandlers 2-50
JSP13.11 JPTag - v o eiee et 2-53
JSP13.1.2 Tag . ovviii 2-53
JSP.13.1.3 lterationTagcovvvvinnnnnn.n.. 2-58
JSP.13.1.4 TryCatchFinally 2-61
JSP.13.1.5 TagSupport 2-62
JSP.13.2 Tag Handlersthat want Access to their Body Content 2-66
JSP.13.21 BodyContent 2-66
JSP.13.22 BodyTagcovviiieiiiinannnn 2-68

JavaServer Pages 2.0 Specification

JSP.13.2.3 BodyTagSupport 2-72

JSP.13.3 Dynamic Attributes 2-74
JSP.13.3.1 DynamicAttributes 2-75
JSP.13.4 Annotated Tag Handler Management Example 2-76
JSP.13.5 Cooperating ACtionScooiiiiinnnnan.. 2-79
JSP.13.6 SimpleTagHandlers.......................... 2-80
JSP.13.6.1 SmpleTagccoiiiiiiin... 2-82
JSP.13.6.2 SimpleTagSupport 2-84
JSP.13.6.3 TagAdapter 2-86
JSP.13.7 JSPFragments. ... 2-88
JSP.13.7.1 JspFragment 2-91
JSP.13.8 Example Simple Tag Handler Scenario 2-92
JSP.13.9 Trandation-timeClasses....................... 2-98
JSP.13.9.1 TagLibrarylnfo............... 2-101
JSP.139.2 TagInfo.......... ... i 2-104
JSP.139.3 TagFilelnfo 2-108
JSP.13.9.4 TagAttributelnfo 2-110
JSP.1395 PageDatacoiiiiiiiin... 2-112
JSP.13.9.6 TagLibraryValidator 2-112
JSP.13.9.7 VadlidationMessage 2-114
JSP.13.9.8 TagExtralnfo 2-115
JSP.1399 TagDataciiiiiii... 2-117
JSP.13.9.10 Variablelnfo 2-119
JSP.13.9.11 TagVariablelnfo...................... 2-122
JSP.13.9.12 Functioninfo......................... 2-124
JSP.14 Expression Language APl, 2-127
JSP.14.1 ExpressionEvaluator 2-127
JSP.14.1.1 ExpressionEvauator 2-128
JSP.14.1.2 EXPressioneueeneinennennnn 2-130
JSP.14.1.3 VariableResolver 2-130
JSP.14.1.4 FunctionMapperc.oovuiin... 2-131
JSP.14.2 EXCEptions.t 2-132
JSP.14.21 ELException 2-132
JSP.14.2.2 ELParseException 2-133
JSP.14.3 CodeFragmentccuviun... 2-134
Part 111 31

JavaServer Pages 2.0 Specification

Xvi

JSP.A PackagingJSPPages, 3-3

JSP.A1 AVeySmpleJSPPage 3-3
JSP.A.2 The JSP Page Packaged as SourceinaWAR File3-3
JSP.A.3 The Servlet for the Compiled JSPPage 3-4
JSP.A.4 TheWeb Application Descriptor 35
JSP.A.5 TheWAR for the Compiled JSPPage 3-6
JSP.B JSP Elementsof webxml, 3-7
JSP.B.1 XML Schemafor JSP 2.0 Deployment Descriptor3-7
JSP.C Tag Library Descriptor Formats 3-15
JSP.C.1 XML Schemafor TLD,JSP20.................. 3-15
JSP.C2 DTDforTLD,JSP12......... ..., 3-41
JSP.C3 DTDforTLD,JSP1.1...... ..., 3-50
JSP.D Page Encoding Detection 3-57
JSP.D.1 DetectionAlgorithm 3-57
JSP.E Changes ... 3-61

JSP.E.1 Changes between JSP 2.0 PFD3 and JSP 2.0 Final . ..3-61
JSP.E.2 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3 .. 3-62
JSP.E.3 Changes between JSP 2.0 PFD and JSP 2.0 PFD2 ...3-64
JSP.E.4 Changes between JSP 2.0 PFDlaand JSP 2.0 PFD ..3-68
JSP.E.5 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a ..3-70
JSP.E.6 Changes between JSP2.0 PD1and JSP2.0PD23-71
JSP.E.7 Changes between JSP 2.0 CD2 and JSP2.0PD13-72
JSP.E.8 Changes between JSP2.0 CD1and JSP2.0CD23-73

ES8.1 BetweenCD2candCD2 3-73
E.8.2 Between CD2bandCD2C 3-74
E.8.3 Between CD2aandCD2b 3-74
E.84 ChangesbetweenCDlandCD2a 3-75
JSP.E.9 Changes between JSP 2.0 ED1and JSP2.0CD13-75
E.95 JSP Fragments, .tag Files, and Simple Tag Handlers
3-75
E.9.6 Expression Language Added 3-75
E.9.7 EBNFFiXesccooviiiiii... 3-76
E.90.8 18N Clarifications. 3-76
E.9.9 OtherChanges 3-76

JSP.E.10 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1 . 3-
JavaServer Pages 2.0 Specification

76

E.10.10 Typographical Fixesand Version Numbers .. 3-76
E.10.11 Added EBNF Grammar for JSP Standard Syntax 3-
76
E.10.12 Added Users of JavaServer Pages Section ... 3-77
E.10.13 Added Placeholders for Expression Language and
Custom ActionsUsingJSP 377
E.10.14 Added Requirement for Debugging Support . 3-77
JSP.E.11 Changes Between PFD 2 and Final Draft 3-77
E.11.15 Added jspiidmechanism................. 3-77
E.11.16 Other Small Changes 3-77
E.11.17 Clarificationof roleof id 3-78
E.11.18 Clarifications on Multiple Requests and Threading
3-78
E.11.19 Clarificationson JSP Documents 3-78
E.11.20 Clarifications on Well Known Tag Libraries . 3-78
E.11.21 Clarified Impact of Blocks 3-79
E.11.22 Other Small Clarifications 3-79
JSP.E.12 ChangesBetween 1.2 PFD 1lbandPFD 2 3-80
E.12.23 Added elementsto Tag Library Descriptor .. 3-80
E.12.24 Changed theway versioninformationisencoded into
TLD o 3-80
E.12.25 Assigning String literals to Object attributes . 3-80
E.12.26 Clarification on valid namesfor prefix, action and at-
tributes. 3-81
E.12.27 Clarification of details of empty actions 3-81
E.12.28 Correctionsrelatedto XML syntax 3-81
E.12.29 Otherchanges 3-81
JSP.E.13 ChangesBetween 1.2PFDand 1.2PFD 1b 3-82
JSP.E.14 ChangesBetween1.2PDl1and1.2PFD........... 3-82
E.14.30 Deletions ... 3-83
E.14.31 Additions. i 3-83
E.14.32 Clarifications. ..., 3-83
E.14.33 Changes. ..., 3-84
JSP.E.15 ChangesBetweenl.land1.2PD1............... 3-84
E.15.34 Organizational Changes 3-84
E.15.35 New Document 3-85
E.15.36 Additionsto APll 3-85

JavaServer Pages 2.0 Specification

XVii

Xviii

E.15.37 Clarifications, 3-86

E.15.38 Changes ..., 3-86
JSP.E.16 ChangesBetween1.0and1.1 3-86
E.16.39 Additions i 3-86

E.16.40 Changes ..., 3-87

JSP.F GloSSary ..ot 3-89

JavaServer Pages 2.0 Specification

Prefacé

T his document is the JavaServer™ Pages 2.0 Specification (JSP 2.0).

This specification was devel oped following the Java Community Process
(SM) (JCP). Comments from Experts, Participants, and the Public were reviewed,
and improvements were incorporated into the specification where applicable.

The original Java Specification Request (JSR-152) listed the version number
of the specifcation as 1.3. The scope and content of the specification effort did not
change, but the expert group realized that the new features would have a deep
impact in the development model of JSP applications and decided that 2.0 would
more appropriately reflect that impact.

Relation ToJSP 1.2

JSP 2.0 extends the JavaServer Pages 1.2 Specification (JSP 1.2) in the follow-
ing ways.

» The JSP 2.0 specification requiresthe Java™ 2 Platform, Standard Edition ver-
sion 1.3 or later for standalone containers, and version 1.4 for containers that
are part of a Java 2 Enterprise Edition 1.4 environment. All JSP containers
must be able to run in a J2SE 1.4 environment.

» The JSP 2.0 specification uses the Servlet 2.4 specification for its web seman-
tics.

» A simple Expression Language (EL) has been added. The EL can be used to
easily access data from the JSP pages. The EL simplifies writing script-less
JSP pages that do not use Java scriptlets or Java expressions and thus have a
more controlled interaction with the rest of the Web Application.

JavaServer Pages 2.0 Specification Xix

XX

* New syntax elements for defining custom actions using the JSP technology
directly have been added. These elements are delivered into .tag and .tagx files
which can be authored by developers and page authors alike to provide encap-
sulation and reusability of common actions.

» The XML syntax has been clarified and improved substantially. New standard
extensions have been added for JSP pages (.jspx) and for tag files (.tagx). We
expect that the new mechanisms will compel authors to use the XML syntax
to generate XML documentsin JSP 2.0.

* An AP for invoking the EL has been added. This API will likely be used in
the implementation of the EL in JSP 2.0 and JSTL but we expect it to also be
used in other technologies like JavaServer™ Faces.

» A new SimpleInvocation Protocol has been added. This API exploits what we
expect to be the prevalent use of script-less pages. The simple invocation pro-
tocol avoids the complex “inverted closure” mechanism of the classic invoca
tion protocol introduced in JSP 1.1 and is used for implementing tag files.

Major Version Number Upgrade (JSP 2.0)

The new featuresintroduced in this specification such as a built-in expression
language, anew invocation protocol, and JSP fragments, together with the JSP Stan-
dard Tag Library, will have a substantial impact on the methodology page authors
will use to write JSP pages. The impact is strong enough that the expert group felt it
was appropriate to upgrade the major version number of the JSP specification to JSP
2.0.

Among other benefits, we believe this version number upgrade will help draw
devel oper’s attention to these new features. It will also allow one to more easily
differentiate between the two different programming models (JSP 1.x style vs.
JSP 2.x style).

Backwar ds Compatibility with JSP 1.2

Where possible, JSP 2.0 attempts to be fully backwards compatible with JSP
1.2. In some cases, there are ambiguities in the JSP 1.2 specification that have
been clarified in JSP 2.0. Because some JSP 1.2 containers behave differently,
some applicationsthat rely on contai ner-specific behavior may need to be adjusted
to work correctly in a JSP 2.0 environment.

JavaServer Pages 2.0 Specification

XXi

Thefollowing isalist of known backwards compatibility issues JSP
developers should be aware of:

1. Tag Library Vaidators that are not namespace aware and that rely solely on
the prefix parameter may not correctly validate some JSP 2.0 pages. Thisisbe-
cause the XML view may contain tag library declarations in elements other
than jsp:root, and may contain the sametag library declaration more than once,
using different prefixes. The uri parameter should always be used by tag li-
brary validatorsinstead. Existing JSP pageswith existing tag librarieswill not
have any problems.

2. Users may observe differences in 118N behavior on some containers due pri-
marily to ambiguity in the JSP 1.2 specification. Where possible, steps were
taken to minimize the impact on backwards compatibility and overall, JSP's
18N abilities have been greatly improved.

In JSP specification versions previous to JSP 2.0, JSP pagesin XML syntax
("JSP documents") and those in standard syntax determined their page encod-
ing in the same fashion, by examining the pageEncoding or contentType
attributes of their page directive, defaulting to 1SO-8859-1 if neither was
present.

Asof JSP 2.0, the page encoding for JSP documents is determined as
described in section 4.3.3 and appendix F.1 of the XML specification, and the
pageEncoding attribute of those pages is only checked to make sureit is con-
sistent with the page encoding determined as per the XML specification.

Asaresult of this change, JSP documents that rely on their page encoding to
be determined from their pageEncoding attribute will no longer be decoded
correctly. These JSP documents must be changed to include an appropriate
XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on a per translation
unit basis whereas in JSP 2.0, page encodings are determined on a per-file
basis. Therefore, if ajsp statically includes b.jsp, and a page encoding is
specified in ajsp but notin b.jsp, in JSP 1.2 ajsp’'s encoding is used for b.jsp,
but in JSP 2.0, the default encoding is used for b.jsp.

3. The type coercion rules in Table JSP.1-11 have been reconciled with the EL
coercion rules. There are some exceptional conditions that will no longer re-
sultinan exceptionin JSP 2.0. In particular, when passing an empty String("")
to an attribute of a numeric type, atrangation error or a NumberFormatExcep-
tion used to occur, whereas in JSP 2.0 a 0 will be passed in instead. See the

JavaServer Pages 2.0 Specification

XXii

new Table JSP.1-11 for details. In genera, this is not expected to cause any
problems because these would have been exceptional conditionsin JSP 1.2 and
the specification allowed for these exceptionsto occur at either trandationtime
or request time.

The JSP container uses the version of web.xml to determine whether you are

running a JSP 1.2 application or a JSP 2.0 application. Various features may

behave differently depending on the version of web.xml. Thefollowingisalist of

things JSP devel opers should be aware of when upgrading their web.xml from
version Servlet 2.3 to version Servlet 2.4

1. EL expressionswill be ignored by default in JSP 1.2 applications. When up-

grading aweb application to JSP 2.0, EL expressionswill beinterpreted by de-
fault. The escape sequence\$ can be used to escape EL expressionsthat should
not be interpreted by the container. Alternatively, the isELIgnored page direc-
tive attribute, or the <el-ignored> configuration element can be used to deacti-
vate EL for entire trandlation units. Users of JSTL 1.0 will need to either
upgrade their taglib importsto the JSTL 1.1 uris, or they will need to use the
_rtversions of thetags (e.g. c_rtinstead of c, or fmt_rt instead of fmt).

. Web applications that contain files with an extension of .jspx will have those

files interpreted as JSP documents, by default. Y ou can use the JSP configu-
ration element <is-xmil> to treat .jspx files as regular JSP pages, but thereis no
way to disassociate .jspx from the JSP container.

. The escape sequence \$ was not reserved in JSP 1.2. Any template text or at-

tribute value that appeared as\$in JSP 1.2 used to output \$ but will now output
just $.

Licensing of Specification

Details on the conditions under which this document is distributed are described

in the license agreement on pageiii.

Who Should Read This Document

This document is the authoritative JSP 2.0 specification. It is intended to pro-

vide requirements for implementations of JSP page processing, and support by web

containers in web servers and application servers. As an authoritative document, it

JavaServer Pages 2.0 Specification

covers material pertaining to awide audience, including Page Authors, Tag Library
Developers, Deployers, Container Vendors, and Tool Vendors.

This document is not intended to be a user’s guide. We expect other
documents will be created that will cater to different readerships.

Organization of This Document

This document comprises of anumber of Chapters and Appendicesthat are
organized into 3 parts. In addition, the document contains a“ Preface” (this section),
a“Status’ on page xxvii, and an “Overview” on page xxix.

Part | contains several chapters intended for all JSP Page Authors. These
chapters describe the general structure of the language, including the expression
language, fragments, and scripting.

Part 11 contains detailed chapters on the JSP container engine and API in full
detail. The information in this part is intended for advanced JSP users.

Finally, Part 111 contains all the appendices.

Related Documents

Implementors of JSP containers and authors of JSP pages may find the follow-
ing documents worth consulting for additional information

Table JSP.P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/serviet

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.3
http://java.sun.com/products/jdk/1.4

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home http://java.sun.com/xml
page

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.0rg/XML
HTML home page at W3C http://www.w3.org/MarkUp
XML.org home page http://www.xml.org

JavaServer Pages 2.0 Specification

XXiii

XXiV

Table JSP.P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

JSR-045 home page (Debugging http://jcp.org/jsridetail/45.jsp
Support for Other Languages)

Historical Note

The following individuals were pioneers who did ground-breaking work on the
Java platform areas related to this specification. James Godling's work on a Web
Server in Javain 1994/1995 became the foundation for servlets. A larger project
emerged in 1996 with Pavani Diwanji as lead engineer and with many other key
members listed below. From this project came Sun’s Java Web Server product.

Things started to move quickly in 1999. The servlet expert group, with James
Davidson aslead, delivered the Servlet 2.1 specification in January and the Servlet
2.2 specification in December, while the JSP group, with Larry Cable and
Eduardo Pelegri-Llopart as leads, delivered JSP 1.0 in Juneand JSP 1.1 in
December.

Theyear 2000 saw alot of activity, with many implementations of containers,
tools, books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Platform,
Enterprise Edition. Tag libraries were an area of intense development, as were
varying approaches to organizing all these features together. The adoption of JSP
technology has continued in the year 2001, with many talks at the “Web, Services
and beyond” track at JavaOne being dedicated to the technology.

The JSP 1.2 specification went final in 2001. JSP 1.2 provided a number of
fine-tunings of the spec. It al'so added the ability for validating JSP pages through
the XML views of a JSP page. JSP 1.2 aso introduced a normative XML syntax
for JSP pages, but its adoption was handicaped by several specification
shortcomings.

JSP 2.0 isamajor revision of the JSP language. Key new features include a
simple Expression Language, tag files, substantial simplifications for writing tag
handlers in Java and the notion of JSP fragments. JSP 2.0 also includes arevision
of the XML syntax that addresses most of the problemsin JSP 1.2.

Tracking the industry in a printed document is at best difficult; the industry
pages at the web site at http://java.sun.com/products/jsp do a better job.

JavaServer Pages 2.0 Specification

XXV

Acknowledgments

Many people contributed to the JavaServer Pages specifications. The success
of the Java Platform depends on the Java Community Process used to define and
evolveit. This process, which involves many individuals and corporations,
promotes the devel opment of high quality specifications in Internet time.

Although it isimpossibleto list al the individuals who have contributed to
this version of the specification, we would like to give thanksto all the members
in our expert group. We have the benefit of avery large, active and enthusiastic
expert group, without which the JSP specifications would not have succeeded.

We want to thank:

Nathan Abramson (Individual), Tim Ampe (Persistence Software Inc.),
Shawn Bayern (Individual), Hans Bergsten (Individual), Paul Bonfanti (New
Atlanta Communications Inc.), Prasad BV (Pramati Technologies), Bjorn Carlson
(America Online), Murthy Chintalapati (Sun Microsystems, Inc.), Kin-Man
Chung (Sun Microsystems, Inc.), Bill de hOra (InterX PLC), Ciaran Dynes
(IONA Technologies PLC), Jayson Falkner (Individual), James Goodwiill
(Individual), Kouros Gorgani (Sybase), Randal Hanford (Boeing), Larry |saacs
(SAS Ingtitute Inc.), Kevin R. Jones (Developmentor), Francois Jouaux (Apple
Computer Inc.), Vishy Kasar (Borland Software Corporation), Ana Von Klopp
(Sun Microsystems, Inc.), Matt LaMantia (Art Technology Group, Inc.), Bart
Leeten (EDS), Geir Magnusson Jr. (Apache Software Foundation), Jason McGee
(IBM), Brian McKellar (SAP AG), Shawn McMurdo (Lutris Technologies),
Charles Morehead (Art Technology Group Inc.), Lars Oleson (SeeBeyond
Technology Corp.), Jeff Plager (Sybase), Boris Pruessmann (Adobe Systems,
Inc.), Tom Reilly (Macromedia, Inc.), Ricardo Rocha (Apache Software
Foundation), John Rousseau (Novell, Inc.), James Strachan (Individual),
Srinagesh Susarla (BEA Systems), Alex Yiu (Oracle).

We want to thank the community that implemented the reference
implementation, and the vendors that have implemented the spec, the authoring
tools, and the tag libraries.

Special mention is due to: Hans Bergsten for his numerous thorough reviews
and technical accuracy, Shawn Bayern for his tireless help with the EL and R,
Alex Yiu for histhorough analysis on the invocation protocol and 118N, Nathan
Abramson for hisin-depth technical expertise and ideas, Norbert Lindenberg for
his overhaul of the 118N chapter, Jan Luehe and Kin-Man Chung for keeping the
RI more than up-to-date with the specification allowing for real-time feedback,
Anavon Klopp for her help with JSR-45 debugging and keeping the tools

JavaServer Pages 2.0 Specification

XXVi

perspective fresh in our minds, and Umit Yalcinalp for her conversion of the TLD
and deployment descriptors into XML Schema.

We want to thank all the authors of books on JSP technology, and the creators
of the web sites that are tracking and facilitating the creation of the JSP
community.

The editors want to give special thanksto many individuals within the Java 2
Enterprise Edition team, and especially to Jean-Francois Arcand, Jennifer Ball,
Stephanie Bodoff, Pierre Delisle, Jim Driscoll, Cheng Fang, Robert Field, Justyna
Horwat, Dianne Jiao, Norbert Lindenberg, Ryan Lubke, Jan Luehe, Craig
McClanahan, Bill Shannon, Prasad Subramanian, Norman Walsh, Yutaka
Yoshida, Kathleen Zelony, and to lan Evans for his editorial work.

Lastly, but most importantly, we thank the software devel opers, web authors
and members of the general public who have read this specification, used the
reference implementation, and shared their experience. You are the reason the
JavaServer Pages technology exists!

JavaServer Pages 2.0 Specification

Status

T hisisthefinal draft of the JSP 2.0 specification, devel oped by the expert
group JSR-152 under the Java Community Process (more details at http://jcp.org/
jsr/detail/152.jsp).

The original Java Specification Request (JSR-152) listed the version number
of the specification as 1.3. The scope and content of the specification effort has
not changed, but the expert group realized that the new features would have adeep
impact on the development model of JSP applications and decided that 2.0 would
more appropriately reflect that impact.

The Java Community Process

The JCP produces a specification using three communities: an expert commu-
nity (the expert group), the participants of the JCP, and the public-at-large. The
expert group isresponsible for the authoring of the specification through acollection
of drafts. Specification drafts move from the expert community, through the partici-
pants, to the public, gaining in detail and completeness, aways feeding received
comments back to the expert group. Thefinal draft is submitted for approval by the
Executive Committee. The expert group lead is responsible for facilitating the work-
ings of the expert group, for authoring the specification, and for delivering the refer-
ence implementation and the confor mance test suite.

The JCP and This Specification

The JCP is designed to be a very flexible process so each expert group can
address the requirements of the specific communitiesit serves. The referenceimple-

JavaServer Pages 2.0 Specification

XXVii

XXViii

mentation for JSP 2.0 and Servlet 2.4 uses code that is being devel oped as an open
source project under an agreement with the Apache Software Foundation.

This specification includes chapters that are derived directly from the Javadoc
comments in the API classes, but, were there to be any discrepancies, this
specification has precedence over the Javadoc comments.

The JCP process provides a mechanism for updating the specification through
amaintenance process using erratas. If available, the erratas will have precedence
over this specification.

JavaServer Pages 2.0 Specification

Overview

T hisisan overview of the JavaServer Pages technol ogy.

The JavaServer Pages™ Technology

JavaServer™ Pages (JSP) isthe Java™ 2 Platform, Enterprise Edition (J2EE)
technology for building applications for generating dynamic web content, such as
HTML, DHTML, XHTML, and XML. JSP technology enables the easy authoring
of web pagesthat create dynamic content with maximum power and flexibility.

General Concepts
JSP technology provides the means for textual specification of the creation of a
dynamic response to areguest. The technology builds on the following concepts:
« Template Data

A substantial portion of most dynamic content is fixed or template content.
Text or XML fragments are typical template data. JSP technology supports
natural manipulation of template data.

* Addition of Dynamic Data
JSP technology provides asimple, yet powerful, way to add dynamic datato
template data.

» Encapsulation of Functionality
JSP technology provides two related mechanisms for the encapsulation of
functionality: JavaBeans™ component architecture, and tag libraries deliver-

JavaServer Pages 2.0 Specification XXiX

XXX

ing custom actions, functions, listener classes, and validation.

» Good Tool Support

Good tool support leads to significantly improved productivity. Accordingly,
JSP technology has features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-
side technology.

Benefits of JavaServer Pages Technology

JSP technology offers the following benefits:

« Write Once, Run Anywhere™ properties

JSP technology is platform independent in its dynamic web pages, its web
servers, and its underlying server components. JSP pages may be authored on
any platform, run on any web server or web enabled application server, and
accessed from any web browser. Server components can be built on any plat-
form and run on any server.

» High quality tool support

Platform independence allows the JSP user to choose best-of-breed tools.
Additionally, an explicit goal of the JavaServer Pages design isto enable the
creation of high quality portable tools.

» Sgparation of Roles

JSP supports the separation of developer and author roles. Devel opers write
components that interact with server-side objects. Authors put static data and
dynamic content together to create presentations suited for their intended
audience.

Each group may do their job without knowing the job of the other. Each role
emphasizes different abilities and, although these abilities may be present in
the sameindividual, they most commonly will not be. Separation allows a nat-
ural division of labor.

A subset of the devel oper community may be engaged in developing reusable
components intended to be used by authors.

* Reuse of components and tag libraries

JavaServer Pages technology emphasizes the use of reusable components

JavaServer Pages 2.0 Specification

XXXi

such as JavaBeans components, Enterprise JavaBeans™ components, and tag
libraries. These components can be used with interactive tools for component
development and page composition, yielding considerable development time
savings. In addition, they provide the cross-platform power and flexibility of
the Java programming language or other scripting languages.

 Separation of dynamic and static content

JavaServer Pages technology enables the separation of static content in atem-
plate from dynamic content that is inserted into the static template. This
greatly smplifies the creation of content. The separation is supported by
beans specifically designed for the interaction with server-side objects, and by
the tag extension mechanism.

» Support for actions, expressions, and scripting

JavaServer Pages technology supports scripting elements as well as actions.
Actions encapsulate useful functionality in a convenient form that can be
manipulated by tools. Expressions are used to access data. Scripts can be used
to glue together this functionality in a per-page manner.

The JSP 2.0 specification adds a simple expression language (EL) to Java-
based scripts. Expressionsin the EL directly express page author concepts
like propertiesin beans and provide more controlled access to the Web Appli-
cation data. Functions defined through the tag library mechanism can be
accessed inthe EL.

The JSP 2.0 specification also adds a mechanism by which page authors can
write actions using the JSP technology directly. This greatly increases the
ease with which action abstractions can be created.

» Web access layer for N-tier enterprise application architecture(s)

JavaServer Pages technology is an integral part of J2EE. The J2EE platform
brings Java technology to enterprise computing. One can how devel op power-
ful middle-tier server applications that include aweb site using JavaServer
Pages technology as afront end to Enterprise JavaBeans componentsin a
J2EE compliant environment.

Basic Concepts

This section introduces basic concepts that will be defined formally later in the
specification.

JavaServer Pages 2.0 Specification

XXXii

What Isa JSP Page?

A JSP page is atext-based document that describes how to process a request to
create aresponse. The description intermixes template data with dynamic actions
and leverages the Java 2 Platform. JSP technology supports a number of different
paradigms for authoring dynamic content. The key features of JavaServer Pages are:

 Standard directives
 Standard actions

* Scripting elements

» Tag Extension mechanism

» Template content

Web Applications

The concept of aweb application isinherited from the servlet specification. A
web application can be composed of:

 Java Runtime Environment(s) running on the server (required)

» JSP page(s) that handle requests and generate dynamic content

» Servlet(s) that handle requests and generate dynamic content

» Server-side JavaBeans components that encapsulate behavior and state

o Static HTML, DHTML, XHTML, XML, and similar pages.

* Client-side Java Applets, JavaBeans components, and arbitrary Java class files

 Java Runtime Environment(s) running in client(s) (downloadable via the Plu-
gin and Java™ Web Start technology)

The JavaServer Pages specification inherits from the servlet specification the
concepts of web applications, ServietContexts, sessions, and requests and
responses. See the Java Servlet 2.4 specification for more details.

Componentsand Containers

JSP pages and servlet classes are collectively referred to as web components.
JSP pages are delivered to a container that providesthe servicesindicated in the JSP
Component Contract.

JavaServer Pages 2.0 Specification

The separation of components from containers allows the reuse of
components, with quality-of-service features provided by the container.

Trandation and Execution Steps

JSP pages are textual components. They go through two phases: atrandation
phase, and arequest phase. Trandation is done once per page. The request phaseis
done once per request.

The JSP page is translated to create a servlet class, the JSP page
implementation class, that isinstantiated at request time. The instantiated JSP
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application,
with a servlet classthat can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or
on-demand as the requests reach an untrandated JSP page.

Deployment Descriptor and Global Information

The JSP pages delivered in aweb application may require some JSP configura
tion information. Thisinformation is delivered through JSP-specific elementsin the
web.xml deployment descriptor, rooted on the <jsp-config> element. Configuration
information includes <taglib> elementsin mapping of tag libraries and <jsp-prop-
erty-group> elements used to provide properties of collections of JSPfiles. The
properties that can be indicated this way include page encoding information, EL
evaluation activation, automatic includes before and after pages, and whether script-
ing is enabled in agiven page.

Rolein the Java 2 Platform, Enterprise Edition

With afew exceptions, integration of JSP pages within the J2EE 1.4 platformis
inherited from the Servlet 2.4 specification since trandation turns JSPsinto serviets.

Usersof JavaServer Pages

There are six classes of usersthat interact with JavaServer Pages technol ogy.
This section describes each class of user, enumerates the technol ogies each must be
familiar with, and identifies which sections of this specification are most relevant to
each user class. Theintent isto ensure that JavaServer Pagesremainsa practical and

JavaServer Pages 2.0 Specification

XXXiii

XXXV

easy-to-use technology for each class of user, even as the language continuesto
grow.

Page Authors

Page Authors are application component providers that use JavaServer Pagesto
devel op the presentation component of aweb application. It is expected that they
will not make use of the scripting capabilities of JavaServer Pages, but rather limit
their useto standard and custom actions. Therefore, it is assumed that they know the
target language, such asHTML or XML, and basic XML concepts, but they need
not know Java at all.

The following sections are most relevant to this class of user:

» Chapter JSP.1, “Core Syntax and Semantics’, except for Section JSP.1.12,
“Scripting Elements’ and Section JSP.1.14, “Tag Attribute Interpretation Se-
mantics’, which both talk about scripting.

» Chapter JSP.2, “Expression Language”
 Chapter JSP.3, “JSP Configuration”

o Chapter JSP4, “Internationalization |ssues’
» Chapter JSP5, “ Standard Actions”

» Chapter JSP.6, “JSP Documents’, except for sections that discuss declara-
tions, scriptlets, expressions, and request-time attributes.

e Section JSP.7.1.1, “Goals’ and Section JSP.7.1.2, “Overview” of
Chapter JSP7, “Tag Extensions”.

» Chapter JSP8, “Tag Files’.
» Appendices JISPA, JSPE, and JSPF.

Advanced Page Authors

Like Page Authors, Advanced Page Authors are a so application component
providersthat use JavaServer Pagesto devel op the presentation component of aweb
application. These authors have a better understanding of XML and a so know Java.
Though they are recommended to avoid it where possible, these authors do have
scripting at their disposal and should be able to read and understand JSPs that make
use of scripting.

The following sections are most relevant to this class of user:

JavaServer Pages 2.0 Specification

XXXV

e Chapters JSP.1, JSP.2, JSP.3, JSP.4 and JSP.5.
 Chapter JSP.6, “JSP Documents”.

» Section JSP9.1.1, “Valid JSP Page”’ and Section JSP9.1.2, “ Reserved
Names’ of Chapter JSP.9, “ Scripting”.

* Section JSP7.1.1, “Goals’ and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

* Chapter JSP8, “Tag Files’

» Section JSP11.4, “ Precompilation” of Chapter JSP.11, “JSP Container”
* Chapter JSP12, “Core API”

» Appendices JSSPA, JSPB, JSPE, and JSPF.

Tag Library Developers

Tag Library Developers are application component providers who write tag
libraries that provide increased functionality to Page Authors and Advanced Page
Authors. They have an advanced understanding of the target language, XML, and
Java.

The following sections are most relevant to this class of user:

e Chapters JSP.1, JSP.2, JSP.3, JSP.4 and JSP.5.
 Chapter JSP.6, “JSP Documents”.

* Section JSP9.1.1, “Valid JSP Page”’ and Section JSP9.1.2, “ Reserved
Names’ of Chapter JSP.9, “ Scripting”.

 Chapter JSP7, “Tag Extensions’

« Chapter JSP38, “Tag Files’

e Section JSP11.4, “Precompilation” of Chapter JSP.11, “JSP Container”
e Chapter JSP12, “Core API” and Chapter JSP.13, “Tag Extension API”
» All Appendices.

Deployers

A deployer isan expert in aspecific operational environment who isresponsible
for configuring aweb application for, and deploying the web application to, that
environment. The deployer does not need to understand the target language or Java,

JavaServer Pages 2.0 Specification

XXXVi

but must have an understanding of XML or use tools that provide the ability to read
deployment descriptors.
The following sections are most relevant to this class of user:

e Section JSP.1.1, “What Isa JSP Page” and Section JSP.1.2, “Web Applica-
tions’ of Chapter JSP.1, “ Core Syntax and Semantics”

» Chapter JSP.3, “ JSP Configuration”

o Chapter JSP4, “Internationalization Issues’
» Chapter JSP.11, “JSP Container”

» All Appendices.

Container Developersand Tool Vendors

Container Developers develop containers that host JavaServer Pages. Tool Ven-
dors write devel opment tools to assist Page Authors, Advanced Page Authors, Tag
Library Developers, and Deployers. Both Container Developers and Tool Vendors
must know XML and Java, and must know all the requirements and technica details
of JavaServer Pages. Therefore, this entire specification isrelevant to both classes of
user.

JavaServer Pages 2.0 Specification

Part |

T he next chapters form the core of the JSP specification. These chapters pro-
videinformation for Page authors, Tag Library developers, deployers and Container
and Tool vendors.

The chapter of this part are

 Core Syntax and Semantics
» Expression Language
 Configuration Information
* Internationalization Issues
 Standard Actions

» JSP Documents

» Tag Extensions

e TagFiles

e Scripting

e XML Views

JavaServer Pages 2.0 Specification

1-1

JavaServer Pages 2.0 Specification

cunerenJOP. 1

T his chapter describes the core syntax and semantics for the JavaServer Pages
2.0 specification (JSP 2.0).

JSP.1.1 What Isa JSP Page

A JSP pageisatextua document that describes how to create a response object
from areguest object for agiven protocol. The processing of the JSP page may
involve creating and/or using other objects.

A JSP page defines a JSP page implementation class that implements the
semantics of the JSP page. This class implements the javax.servlet.Servlet
interface (see Chapter JSP.11 for details). At request time a request intended for
the JSP page is delivered to the JSP page implementation object for processing.

HTTP isthe default protocol for requests and responses. Additional request/
response protocols may be supported by JSP containers. The default request and
response objects are of type HttpServletRequest and HttpServletResponse
respectively.

JSP.1.11 Web Containersand Web Components

A JSP container is asystem-level entity that provides life-cycle management
and runtime support for JSP pages and servlet components. Requests sent to a JSP
page are delivered by the JSP container to the appropriate JSP page implementation
object. The term web container is synonymous with JSP container.

A web component is either a servlet or a JSP page. The serviet element ina
web.xml deployment descriptor is used to describe both types of web components.
JSP page components are defined implicitly in the deployment descriptor through

JavaServer Pages 2.0 Specification

Core Syntax and Semanticé

1-3

CORE SYNTAX AND SEMANTICS

the use of an implicit .jsp extension mapping, or explicitly through the use of a
jsp-group element.

JSP.1.1.2 GeneratingHTML

A traditional application domain of the JSP technology isHTML content. The
JSP specification supports well this use through a syntax that isfriendly to HTML
and XML although it is not HTML-specific; for instance, HTML comments are
treated no differently than other HTML content. The JSP Standard Tag Library has
specific support for HTML though some specific custom actions.

JSP.1.1.3 Generating XML

An increasingly important application domain for JSP technology is dynamic
XML content using formats like XHTML, SV G and the Open Office format, and in
applications like content publishing, data representation and Web Services. The
basic JSP machinery (JSP syntax) can be used to generate XML content, but it is
also possible to tag a JSP page as a JSP document and get additional benefits.

A JSP document is an XML document; this means that a JSP document is a
well-formed, structured document and that this will be validated by the JSP
container. Additionally, this structure will be available to the JSP validation
machinery, the TagLibraryValidators. A JSP document is a namespace-aware
XML document, with namespaces reflecting the structure of both content and
custom actions and with some additional care, a JSP page can reflect quite
accurately the structure of the resulting content. A JSP document can also use
machinery like entity definitions.

The JSP 1.2 specification made a stronger distinction between JSP documents
and non-XML JSP pages. For instance standard actions like <jsp:expression>
were only available in JSP documents. The difference proved to be confusing and
distracting and the distinction has been relaxed in JSP 2.0 to facilitate the
transition from the JSP syntax to XML syntax.

JSP.1.1.4 Trandation and Execution Phases

A JSP container manages two phases of a JSP page’s lifecycle. Inthetranda-
tion phase, the container validates the syntactic correctness of the JSP pages and tag
files and determines a JSP page implementation class that corresponds to the JSP
page. In the execution phase the container manages one or more instances of this
classin response to requests and other events.

JavaServer Pages 2.0 Specification

What Is a JSP Page

During the trandation phase the container locates or creates the JSP page
implementation class that corresponds to a given JSP page. This processis
determined by the semantics of the JSP page. The container interprets the standard
directives and actions, and the custom actions referencing tag libraries used in the
page. A tag library may optionally provide a validation method acting on the
XML View of aJSP page, see below, to validate that a JSP pageis correctly using
thelibrary.

A JSP container has flexibility in the details of the JSP page implementation
classthat can be used to address quality-of-service--most notably performance--
issues.

During the execution phase the JSP container delivers events to the JSP page
implementation object. The container is responsible for instantiating request and
response objects and invoking the appropriate JSP page implementation object.
Upon completion of processing, the response object is received by the container
for communication to the client. The details of the contract between the JSP page
implementation class and the JSP container are described in Chapter JSP.11.

Thetrangdlation of a JSP source page into itsimplementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.

Section JSP.1.1.9 describes how to perform the translation phase ahead of
deployment.

JSP.1.1.5 Validating JSP pages

All JSP pages, regardless of whether they are written in the traditional JSP syn-
tax or the XML syntax of JSP documents have an equivalent XML document, the
XML view of aJSP page, that is presented to tag library validatorsin the trandation
phase for validation.

The structure of the custom actions in a JSP page is always exposed in the
XML view. This means that atag library validator can check that, for instance,
some custom actions are only used within others.

The structure of the content used in a JSP page is exposed in greater or |lesser
detail depending on whether the XML syntax or the traditional JSP syntax is used.
When using XML syntax atag library validator can use that extra structure to, for
example, check that some actions are only used with some content, or within some
content, and, using knowledge of the semantics of the custom actions, make
assertions on the generated dynamic content.

JavaServer Pages 2.0 Specification

CORE SYNTAX AND SEMANTICS

JSP.1.1.6 Eventsin JSP Pages

A JSP page may indicate how some events are to be handled.

Asof JSP 1.2 only init and destroy events can be described in the JSP page.
When thefirst request is delivered to a JSP page, ajsplinit() method, if present, will
be called to prepare the page. Similarly, a JSP container invokes a JSP's jspDe-
stroy() method to reclaim the resources used by the JSP page at any time when a
regquest is not being serviced. Thisisthe samelife-cycle asfor servlets.

JSP.1.1.7 JSP Configuration Infor mation

JSP pages may be extended with configuration information that is delivered in
the JSP configuration portion of the web.xml deployment description of the web
application. The JSP configuration information includes interpretation for the tag
libraries used in the JSP files and different property information for groups of JSP
files. The property information includes. page encoding information, whether the
EL evaluation and the scripting machinery is enabled, and prelude and coda auto-
matic inclusions. The JSP configuration information can also be used to indicate that
some resources in the web application are JSP files even if they do not conform to
the default .jsp extension, and to modify the default interpretation for .jspx.

JSP.1.1.8 Naming Conventionsfor JSP Files

A JSP pageis packaged as one or more JSPfiles, often in aweb application, and
delivered to atool like a JSP container, a J2EE container, or an IDE. A complete JSP
page may be contained in asinglefile. In other cases, the top file will include other
files that contain complete JSP pages, or included segments of pages.

It is common for tools to need to differentiate JSP files from other files. In
some cases, the tools also need to differentiate between top JSP files and included
segments. For example, a segment may not be alegal JSP page and may not
compile properly. Determining the type of file is also very useful from a
documentation and maintenance point of view, as people familiar with the .c and
.h convention in the C language know.

By default the extension .jsp means atop-level JSP file. We recommend, but
do not mandate, to differentiate between top-level JSP files (invoked directly by
the client or dynamically included by another page or servlet) and statically
included segments so that:

JavaServer Pages 2.0 Specification

What |s a JSP Page 1-7

* The .jsp extension is used only for files corresponding to top level JSP files,
forming a JSP page when processed.

» Statically included segments use any other extension. Asincluded segments
werecalled * JSPfragments’ in past versions of this specification, the extension
Jjspf was offered as a suggestion. This extension is still suggested for consis-
tency reasons, despite that they are now called *jsp segments .

JSP documents, that is, JSP pages that are delivered as XML documents, use
the extension .jspx by default.

The jsp-property-group €lement of web.xml can be used to indicate that some
group of files, perhaps not using either of the extensions above, are JSP pages, and
can also be used to indicate which ones are delivered as XML documents.

JSP.1.1.9 Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment
information during development (a JSP page can also be compiled at deployment
time). In thisway JSP page authoring tools and JSP tag libraries may be used for
authoring servlets. The benefits of this approach include:

» Removal of the start-up lag that occurs when a container must translate a JSP
page upon receipt of the first request.

* Reduction of the footprint needed to run a JSP container, as the Java compiler
is not needed.

Compilation of a JSP page in the context of aweb application provides
resolution of relative URL specificationsin include directives and el sewhere, tag
library references, and trand ation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

JSP.1.1.9.1 JSP Page Packaging

When a JSP page implementation class depends on support classes in addition
to the JSP 2.0 and Servlet 2.4 classes, the support classes are included in the pack-
aged WAR, asdefined in the Servlet 2.4 specification, for portability across JSP con-
tainers.

Appendix JSPA contains two examples of JSP pages packaged in WARS:

1. A JSP page delivered in source form (the most common case).

JavaServer Pages 2.0 Specification

CORE SYNTAX AND SEMANTICS

2. A JSP page translated into an implementation class plus deployment informa-
tion. The deployment information indicates support classes needed and the
mapping between the original URL path to the JSP page and the URL for the
JSP page implementation class for that page.

JSP.1.1.10 Debugging JSP Pages

In the past debugging tools provided by development environments have lacked
astandard format for conveying source map information allowing the debugger of
one vendor to be used with the JSP container of another. As of JSP 2.0, containers
must support JSR-045 (“ Debugging Support for Other Languages’). Details can be
found in Section JSP.11.5, “ Debugging Requirements”.

JSP.1.2 Web Applications

A web application is a collection of resources that are available at designated
URLs. A web application is made up of some of the following:

 Javaruntime environment(s) running in the server (required)

» JSP page(s) that handle requests and generate dynamic content

» Servlet(s) that handle requests and generate dynamic content

* Server-side JavaBeans components that encapsul ate behavior and state

o Static HTML, DHTML, XHTML, XML and similar pages.

» Resourcefiles used by Java classes.

* Client-side Java Applets, JavaBeans components, and Java class files
 Javaruntime environment(s) (downloadable via the Plugin and Java Web

Start) running in client(s)

Web applications are described in more detail in the Servlet 2.4 specification.

A web application contains a deployment descriptor web.xml that contains
information about the JSP pages, servlets, and other resources used in the web
application. The deployment descriptor is described in detail in the Servlet 2.4
specification.

JSP 2.0 requires that these resources be implicitly associated with and
accessible through a unique ServletContext instance available as the implicit appli-
cation object (see Section JSP.1.8).

JavaServer Pages 2.0 Specification

Web Applications 1-9

The application to which a JSP page belongs s reflected in the application
object, and has impact on the semantics of the following elements:

* Theinclude directive (see Section JSP.1.10.3).

» Thetaglib directive (see Section JSP.1.10.2).

* Thejsp:include action element (see Section JSP5.4).
» Thejsp:forward action (see Section JSP.5.5).

JSP 2.0 supports portable packaging and deployment of web applications
through the Servlet 2.4 specification. The JavaServer Pages specification inherits
from the servlet specification the concepts of applications, ServletContexts,
Sessions, Requests and Responses.

JSP.1.2.1 Relative URL Specifications

Elements may use relative URL specifications, called URI paths, in the Servlet
2.4 specification. These paths are as described in RFC 2396. We refer to the path
part of that specification, not the scheme, nor authority parts. Some examples are;

» A context-relative pathisapath that startswith aslash (/). Itisto beinterpreted
asrelative to the application to which the JSP page or tag file belongs. That is,
its ServletContext object provides the base context URL.

» A page relative path is a path that does not start with aslash (/). It isto bein-
terpreted as relative to the current JSP page, or the current JSP file or tag file,
depending on where the path is being used. For an include directive (see
Section JSP.1.10.3) where the path is used in afile attribute, the interpretation
isrelative to the JSP file or tag file. For ajsp:include action (see
Section JSP5.4) where the path isused in apage attribute, theinterpretationis
relative to the JSP page. In both cases the current page or fileis denoted by
some path starting with / that is then modified by the new specification to pro-
duce a path starting with /. The new path is interpreted through the Serviet-
Context object. See Section JSP.1.10.5 for exact details on thisinterpretation.

The JSP specification uniformly interprets paths in the context of the web
container where the JSP page is deployed. The specification goes through a
mapping trandation. The semantics outlined here apply to the trangation-time
phase, and to the request-time phase.

JavaServer Pages 2.0 Specification

1-10

CORE SYNTAX AND SEMANTICS

JSP.1.3 Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

JSP.1.3.1 Elementsand Template Data

A JSP page has elements and template data. An element is an instance of an ele-
ment type known to the JSP container. Template datais everything else; that is, any-
thing that the JSP trandator does not know abouit.

The type of an element describes its syntax and its semantics. If the element
has attributes, the type describes the attribute names, their valid types, and their
interpretation. If the element defines objects, the semantics includes what objects
it defines and their types.

JSP.1.3.2 Element Syntax

There are three types of elements: directive elements, scripting elements, and
action elements.

Directives

Directives provide global information that is conceptually valid independent
of any specific request received by the JSP page. They provide information for
the trandlation phase.

Directive elements have a syntax of the form <% @ directive...%>.

Actions

Actions provide information for the request processing phase. The interpreta-
tion of an action may, and often will, depend on the details of the specific
request received by the JSP page. An Actions can either be standard (that is.
defined in this specification), or custom (that is, provided via the portable tag
extension mechanism).

Action elements follow the syntax of an XML element. They have a start tag
including the element name, and may have attributes, an optional body, and a
matching end tag, or may be an empty tag, possibly with attributes:

<mytag attrl="attribute value”...>body</mytag>

And:

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page

<mytag attrl="attribute value”.../>
<mytag attrl="attribute value” ...></mytag>

An element has an element type describing its tag name, its valid attributes
and its semantics. We refer to the type by its tag name.

JSP tags are case-sensitive, asin XML and XHTML.

An action may create objects and may make them available to the scripting
elements through scripting-specific variables.

Scripting Elements

Scripting elements provide “glue” around template text and actions.

JSP 2.0 has a simple Expression Language (EL) that can be used to simplify
accessing data from different sources. EL expressions can be used in JSP stan-
dard and custom actions and template data. EL expressions use the syntax
${expr}; For example:

<mytag attr1="${bean.property}".../>
${map[entry]}
<lib:myAction>${3+counter}</lib:myAction>

Chapter JSP.2 provides more details on the EL.

JSP 2.0 retains the three language-based types of scripting elements. declara-
tions, scriptlets, and expressions. Declarations follow the syntax <%! ... %>.
Scriptlets follow the syntax <% ... %>. Expressions follow the syntax

<%= ... %>.

JSP.1.3.3 Start and End Tags

Elementsthat have distinct start and end tags (with enclosed body) must start
and end in the samefile. The start tag cannot be on onefilewhiletheend tagisin
another.

The same rule applies to elements in the alternate syntax. For example, a
scriptlet has the syntax <% scriptlet %>. Both the opening <% characters and the
closing %> characters must be in the same physical file.

A scripting language may also impose constraints on the placement of start
and end tags relative to specific scripting constructs. For example, Chapter 9
shows that Java language blocks cannot separate a start and an end tag. See
Section JSP9.4 for details.

JavaServer Pages 2.0 Specification

1-11

1-12 CORE SYNTAX AND SEMANTICS

JSP.1.34 Empty Elements

Following the XML specification, an e ement described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag
As examples, the following are all empty tags:

<x:foo></x:foo>

<x:foo />

<x:foo/>

<x:fo0><%-- any comment --%></x:foo>

While the following are al non-empty tags:

<foo> </foo>

<foo><%-= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>

<foo><!-- a comment --></foo>

JSP.1.35 Attribute Values

Following the XML specification, attribute val ues always appear quoted. Either
single or double quotes can be used to reduce the need for escaping quotes; the quo-
tation conventions available are described in Section JSP.1.6. There are two types of
attribute values, literals and request-time expressions (Section JSP.1.14.1), but the
guotation rules are the same.

JSP.1.3.6 Thejsp:attribute, jsp:body and jsp:element Elements

Until JSP 2.0, tag handlers could be passed input two ways: through attribute
values and through the element body. Attribute values were always eval uated once
(if they were specified as an expression) and the result was passed to the tag
handler. The body could contain scripting elements and action elements and be
evaluated zero or more times on demand by the tag handler.

As of JSP 2.0, page authors can provide input in new ways using the
<jsp:attribute> standard action element. Based on the configuration of the action
being invoked, the body of the element either specifies avaluethat is evaluated
once, or it specifies a“ JSP fragment,” which represents the body in aform that
makes it possible for atag handler to evaluate it as many times as needed. The
<jsp:attribute> action must only be used to specify an attribute value for standard
or custom actions. A transglation error must occur if itisused in any other context,
for example to specify the value of template text that looks like an XML element.

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-13

Itisillegal JSP syntax, which must result in atranslation error, to use both an
XML element attribute and a <jsp:attribute> standard action to pass the value of
the same attribute. See Section JSP.5.10 for more details on the <jsp:attribute>
standard action.

The following example uses an XML element attribute to define the value of
the param1 attribute, and uses an attribute standard action to define the value of
the param?2 attribute. In this example, the value of param2 comes from the result
of a custom action invocation.

<mytag:paramTag paraml="valuel”>
<jsp:attribute name="param2">
<mymath:add x="2" y="2"/>
</jsp:attribute>
</mytag:paramTag>

If a page author wishes to pass both an attribute standard action and atag
body, the <jsp:body> standard action must be used to specify the body. A
trandlation error will result if the custom action invocation has <jsp:attribute>
elements but does not define the body using a <jsp:body> element. See
Section JSP5.11 for more details on the <jsp:body> standard action.

The following example shows two eguivalent tag invocations to the
hypothetical <mytag:formatBody> custom action. The first invocation uses an
XML element attribute to pass the values of the color and size attributes. The
second example uses an attribute standard action to pass the value of the color
attribute. Both examples have tag body containing ssmply the words “ Template
Text”.

<mytag:tagWithBody color="blue” size="12">
Template Text
</mytag:tagWithBody>

<mytag:tagWithBody size="12">
<jsp:attribute name="color">blue</jsp:attribute>
<jsp:body>
Template Text
</jsp:body>
</mytag:tagWithBody>

<jsp:attribute> can be used with the <jsp:element> standard action to generate
dynamic content in awell structured way. The example below generates an
HTML head of some type unknown at page authoring time:

JavaServer Pages 2.0 Specification

1-14 CORE SYNTAX AND SEMANTICS

<jsp:element name="H${headLevel}">
<jsp:attribute name="size">${headSize}</jsp:attribute>
<jsp:body>${headText}<jsp:body>

</jsp:element>

JSP.1.3.7 Valid Namesfor Actionsand Attributes

The names for actions must follow the XML convention (i.e. must be an NMTO-
KEN asindicated in the XML 1.0 specification). The names for attributes must fol-
low the conventions described in the JavaBeans specification.

Attribute names that start with jsp, _jsp, java, or sun arereserved in this
specification.

JSP.1.3.8 White Space

In HTML and XML white spaceis usually not significant, but there are excep-
tions. For example, an XML file may start with the characters <?xml, and, when it
does, it must do so with no leading whitespace characters.

This specification follows the whitespace behavior defined for XML. White
space within the body text of a document is not significant, but is preserved.

Next are two examples of JSP code with their associated output. Note that
directives generate no data and apply globally to the JSP page.

Table JSP.1-1 Example 1 - Input

LineNo Source Text

1 <?xml version="1.0" ?>

2 <%@ page buffer="8kb” %>

3 The rest of the document goes here
Theresultis

Table JSP.1-2 Example 1 - Output
LineNo Output Text

1 <?xml version="1.0" ?>
2
3 The rest of the document goes here

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page

The next two tables show another example, with input and output.,

Table JSP.1-3 Example 2 - Input

LineNo Source Text
1 <% response.setContentType(“....");
2 whatever... %><?xml version="1.0" ?>
3 <%@ page buffer="8kb” %>
4 The rest of the document goes here

Theresultis

Table JSP.1-4 Example 2 - Output

LineNo Output Text

1 <?xml version="1.0" ?>
2
3 The rest of the document goes here

JSP.1.3.9 JSP Documents

A JSP pageis usualy passed directly to a JSP container. A JSP Document isa
JSP page that isaso an XML document. When a JSP document is encountered by
the JSP container, it isinterpreted asan XML document first and after that as a JSP
page. Among the consequences of this are:

The document must be well-formed
Validation, if indicated

Entity resolution will apply, if indicated

<% style syntax cannot be used

JSP documents are often a good match for the generation of dynamic XML
content as they can preserve much of the structure of the generated document.

The default convention for JSP documentsis .jspx. There are configuration
elements that can be used to indicate that a specific file is a JSP document.

See Chapter JSP.6 for more details on JSP documents, and Chapter 3 for more
details on configuration.

JavaServer Pages 2.0 Specification

1-15

1-16

CORE SYNTAX AND SEMANTICS

JSP.1.3.10 JSP Syntax Grammar

This section presentsasimple EBNF grammar for the JSP syntax. The grammar
isintended to provide a concise syntax overview and to resolve any syntax ambigu-
ities present in this specification. Other sections may apply further restrictionsto this
syntax, for exampleto restrict what represents avalid attribute value for a page
directive. In all other cases the grammar takes precedence in resolving syntax ques-
tions.

The notation for this grammar isidentical to that described by Chapter 6 of
the XML 1.0 specification, available at the following URL:

http://www.w3c.org/TR/2000/REC-xmI-20001006#sec-notation

In addition, the following notes and rules apply:

» Theroot production for a JSP page is JSPPage.

» The prefix XML:: is used to refer to an EBNF definition in the XML 1.0 speci-
fication. Refer to http://www.w3.org/TR/REC-xml.

» Where applicable, to resolve grammar ambiguities, the first matching produc-
tion must always be followed. Thisis commonly known as the “greedy” algo-
rithm.

* If the <TRANSLATION_ERROR> production is followed, the page isinvaid,
and the result will be atrandation error.

» Many productions make use of XML-style attributes. These attributes can ap-
pear in any order, separated from each other by whitespace, but no attribute
can be repeated more than once. To make these XML -style attribute specifica-
tions more concise and easier to read, the syntax ATTR[attrset] is used in the
EBNF to define aset of XML attributes that are recognized in a particular pro-
duction.

Within the square brackets (attrset) is listed a comma-separated list of case-
sensitive attribute names that are valid. Each attribute name represents a sin-
gle XML attribute. If the attribute name is prefixed with an =, the production
Attribute (defined below) must be matched (either artexprvalue or a static
value is accepted). If not, the production NonRTAttribute must be matched
(only static values are accepted). If the attribute nameis prefixed with a!, the
attribute is required and must appear in order for this production to be
matched. If an attribute that matches the Attribute production with a name not
listed appears adjacent to any of the other attributes, the production is not
matched.

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-17

For example, consider a production that contains ATTR[Iname, =value,
=Irepeat]. This production is matched if and only if al of the following hold
true:
» The name attribute appears exactly once and matches the NonRTAttribute
production.
» Thevalue attribute appears at most once. If it appears, the Attribute produc-
tion must be matched.
» Therepeat attribute appears exactly once and matchesthe Attribute produc-
tion.
» There must be no other attributes aside from name, value, or repeat.

For example, the following sample strings match the above:
* name="somename” value="somevalue” repeat="2"
* repeat="${ x + y } name="othername”

JSP.1.3.10.1 EBNF Grammar for JSP Syntax

JSPPage = Body
JSPTagDef = Body
Body = AlIBody | ScriptlessBody

[vc: ScriptingEnabled]
[vc: ScriptlessBody]

AliIBody m=(('<%--’ JSPCommentBody)
| (<%@’ DirectiveBody)
| (‘<jsp:directive. XMLDirectiveBody)
| (<% DeclarationBody)
| ('<jsp:declaration’ XMLDeclarationBody)
| (<%= ExpressionBody)
| ('<jsp:expression’ XMLExpressionBody)
| (<%’ ScriptletBody)
| ('<jsp:scriptlet’ XMLScriptletBody)
| (% ELExpressionBody)
| (‘<jsp:text’ XMLTemplateText)
| (‘<jsp’’ StandardAction)
| (< ExtraClosingTag)
| (< CustomAction

CustomActionBody)
| TemplateText

)*

JavaServer Pages 2.0 Specification

1-18

ScriptlessBody

1
—~

I
I
I
(
I

I
)*

(|<%__1

(‘<%@’

(‘<jsp:directive.

(l<%!l

CORE SYNTAX AND SEMANTICS

JSPCommentBody
DirectiveBody

XMLDirectiveBody
<TRANSLATION_ERROR>

~— — N

(‘<jsp:declaration’

(1<%:1

<TRANSLATION_ERROR>
<TRANSLATION_ERROR>)

~

(‘<jsp:expression’

(l<%!

<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)

(‘<jsp:scriptlet’

(${
(‘<jsp:text’
(*<isp:
('<r

(<

<TRANSLATION_ERROR>
ELExpressionBody
XMLTemplateText
StandardAction
ExtraClosingTag
CustomAction
CustomActionBody)

— N N N

TemplateText

[ve: ELEnabled]

TemplateTextBody ::= (

)*

(‘<0p--’

(<%@’

(‘<jsp:directive.

(;<%!1

JSPCommentBody
DirectiveBody

XMLDirectiveBody
<TRANSLATION_ERROR>

~— N — —

(‘<jsp:declaration’

(;<%:1

<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)

(‘<jsp:expression’

(x<%|

<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>

~

(‘<jsp:scriptlet’

('${
(‘<jsp:text’
(‘<jsp:’

(l<£

<TRANSLATION_ERROR>
<TRANSLATION_ERROR>
<TRANSLATION_ERROR>
<TRANSLATION_ERROR>
CustomAction

<TRANSLATION_ERROR>)

~— N —

TemplateText

[vc: ELEnabled]

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page

JSPCommentBody

(Char* - (Char* --9%>")) --%6>’

| <TRANSLATION_ERROR>

DirectiveBody

JSPDirectiveBody | TagDefDirectiveBody

[vc: TagFileSpecificDirectives]

XMLDirectiveBody ::= XMLJSPDirectiveBody | XMLTagDefDirectiveBody
[vc: TagFileSpecificXMLDirectives]

JSPDirectiveBody = S?
((‘page’ S PageDirectiveAttrList)
| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)
)
S? ‘%>’

| <TRANSLATION_ERROR>

XMLJSPDirectiveBody::= S?
((‘page’ S PageDirectiveAttrList S?
(‘> (> S?ETag))
)
| (finclude’ S IncludeDirectiveAttrList S?
(‘> (> S?ETag))
)
)
| <TRANSLATION_ERROR>
TagDefDirectiveBody::= S?
((‘tag’ S TagDirectiveAttrList)
| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)
| (‘attribute’ S AttributeDirectiveAttrList)
| (‘variable’ S VariableDirectiveAttrList)
)
S? ‘%>’

| <TRANSLATION_ERROR>

JavaServer Pages 2.0 Specification

1-19

1-20 CORE SYNTAX AND SEMANTICS

XMLTagDefDirectiveBody::= ((‘tag’ S TagDirectiveAttrList S?
(‘> (> S?ETag))

| (C‘include’ S IncludeDirectiveAttrList S?
(‘7| (*>"S?ETag))
)
| (‘attribute’ S AttributeDirectiveAttrList S?
(‘> (>"S?ETag))
)
| (‘variable’ S VariableDirectiveAttrList S?
(‘> | (> S?ETag))
)

)
| <TRANSLATION_ERROR>

PageDirectiveAttrList::= ATTR[language, extends, import, session,
buffer, autoFlush, isThreadSafe,
info, errorPage, isErrorPage,
contentType, pageEncoding,
iseLIgnored]
[vc: PageDirectiveUniqueAttr |

TagLibDirectiveAttrList::= ATTR[luri, lprefix]
| ATTR] tagdir, !'prefix]
[vc: TagLibDirectiveUniquePrefix]

IncludeDirectiveAttrList::=ATTR[[file]

TagDirectiveAttrList ::= ATTR[display-name, body-content,
dynamic-attributes, small-icon, large-icon,
description, example, language,
import, pageEncoding, isELIgnored]

[vc: TagDirectiveUniqueAttr]

AttributeDirectiveAttrList::=ATTR[Iname, required, fragment, rtexprvalue,
type, description]
[vc: UniqueAttributeName]

VariableDirectiveAttrList::= ATTR[!name-given, variable-class,
scope, declare, description]
| ATTR[!name-from-attribute, !alias,
variable-class,
scope, declare, description]
[vc: UniqueVariableName]

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-21

DeclarationBody (Char* - (Char* ‘%>")) ‘%>’

| <TRANSLATION_ERROR>

XMLDeclarationBody::= (S?/>")
| (S?>

((Char* - (Char* '<*)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

ExpressionBody (Char* - (Char* ‘%>")) ‘%>’
| <TRANSLATION_ERROR>

[vc: ExpressionBodyContent |

XMLExpressionBody::= (S?/>")
| (S?>

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

[vc: ExpressionBodyContent]

ELExpressionBody ELExpression ‘Y

| <TRANSLATION_ERROR>

ELExpression [See Section JSP.2.9, production Expression]

ScriptletBody (Char* - (Char* ‘%>")) ‘%>’

| <TRANSLATION_ERROR>

XMLScriptletBody = (S?/>")
| (s?%

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

JavaServer Pages 2.0 Specification

1-22 CORE SYNTAX AND SEMANTICS

StandardAction u= (‘useBean’ StdActionContent)
(‘setProperty’ StdActionContent)
(‘getProperty’ StdActionContent)

I

|

| (‘include’ StdActionContent)
| (‘forward’ StdActionContent)
| (‘plugin’ StdActionContent)
| (‘invoke’ StdActionContent)
| (‘doBody’ StdActionContent)
| (‘element’ StdActionContent)
| (‘output’ StdActionContent)
| <TRANSLATION_ERROR>

[vc: TagFileSpecificActions]

StdActionContent ;= Attributes StdActionBody
[vc: StdActionAttributesValid]

StdActionBody = EmptyBody
| OptionalBody
| ParamBody
| PluginBody
[vc: StdActionBodyMatch]

EmptyBody = >
| (>'ETag)
| ("> S? ‘<jsp:attribute’ NamedAttributes ETag)

TagDependentActionBody ::= JspAttributeAndBody
| (>’ TagDependentBody ETag)

TagDependentBody ::= Char* - (Char* ETag)

JspAttributeAndBody::

("> S? ('<jsp:attribute’NamedAttributes)?
‘<jsp:body’
(JspBodyBody |<TRANSLATION_ERROR>)
S? ETag

ActionBody JspAttributeAndBody

| (>’ Body ETag)

ScriptlessActionBody:: JspAttributeAndBody

| ("> ScriptlessBody ETag)

OptionalBody ;= EmptyBody | ActionBody

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-23

ScriptlessOptionalBody::=EmptyBody | ScriptlessActionBody

TagDependentOptionalBody::= EmptyBody | TagDependentActionBody

ParamBody = EmptyBody
| (>’ S?('<jsp:attribute’ NamedAttributes)?
‘<jsp:body’
(JspBodyParam | <TRANSLATION_ERROR>)
S? ETag
)
| (S?‘> Param* ETag)
PluginBody = EmptyBody
| (>’ S? ('<jsp:attribute’ NamedAttributes)?
‘<jsp:body’
(JspBodyPluginTags

| <TRANSLATION_ERROR>

)
S? ETag

)
| (> S? PluginTags ETag)

NamedAttributes

AttributeBody S? (‘<jsp:attribute’ AttributeBody S?)*

AttributeBody

ATTR[!name, trim] S?
(>
| ‘></jsp:attribute>’
| ‘> AttributeBodyBody ‘</jsp:attribute>’
| <TRANSLATION_ERROR>

AttributeBodyBody

AllBody
| ScriptlessBody
| TemplateTextBody
[ve: AttributeBodyMatch]

JspBodyBody (S? JspBodyEmptyBody)

| (S?*>' (JspBodyBodyContent -) ‘</jsp:body>")

JspBodyBodyContent::= ScriptlessBody | Body | TagDependentBody
[vc: JspBodyBodyContent |

JspBodyEmptyBody n= >
| ‘></jsp:body>’
| <TRANSLATION_ERROR>

JavaServer Pages 2.0 Specification

1-24 CORE SYNTAX AND SEMANTICS

JspBodyParam 5= S§? >’ S? Param* ‘</jsp:body>’
JspBodyPluginTags ::= S? >’ S? PluginTags ‘</jsp:body>’

PluginTags = (‘<jsp:params’ Params S?)?
(‘<jsp:fallback’ Fallback S?)?

Params n= > S?
((‘<isp:body>'
((S? Param+ S? ‘</jsp:body>")
| <TRANSLATION_ERROR>
)
)

| Param+

)

'</jsp:params>’

Fallback n= >’
| (> S?'<jsp:body>’
((s?
(Char* - (Char* ‘</jsp:body>"))
‘</jsp:body>" S?
)
| <TRANSLATION_ERROR>
)
‘</jsp:fallback>’
)
[>
(Char* - (Char* '</jsp:fallback>"))
'</jsp:fallback>’
)
Param ©= '<jsp:param’ StdActionContent
Attributes = (S Attribute)* S?

[ve: UniqueAttSpec]

CustomAction .= TagPrefix ;" CustomActionName
[vc: CustomActionMatchesAndValid]

TagPrefix ;= Name

CustomActionName ::= Name

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-25

CustomActionBody ::= (Attributes CustomActionEnd)
| <TRANSLATION_ERROR>
CustomActionEnd = CustomActionTagDependent

| CustomActionJSPContent
| CustomActionScriptlessContent

CustomActionTagDependent::= TagDependentOptionalBody
[vc: CustomActionTagDependentMatch]

CustomActionJSPContent::= OptionalBody
[vc: CustomActionJSPContentMatch]

CustomActionScriptlessContent::= ScriptlessOptionalBody
[vc: CustomActionScriptlessContentMatch]

TemplateText n= (<'|1'${")
| (TemplateChar* - (TemplateChar* (‘<* | ‘${*)))

TemplateChar n= \$
| <\%’
| Char
[vc : QuotedDollarMatched]

XMLTemplateText = (S?/>")
| (Ss?°
((Char*-(Char* (‘< |‘${")))
(‘${" ELExpressionBody)?
CDSect?
)* ETag
)
| <TRANSLATION_ERROR>
[vc: ELEnabled]
ExtraClosingTag = ETag
[ve: ExtraClosingTagMatch]
ETag = ‘< TagPrefix .’ Name S? >’

[vc: ETagMatch]

JavaServer Pages 2.0 Specification

1-26

Attribute

NonRTAttribute

AnyAttributeValue

AttributeValue

RTAttributeValue

AttributeValueDouble::=

AttributeValueSingle ::=

CORE SYNTAX AND SEMANTICS

Name Eq

((""<%=" RTAttributeValueDouble)
| ("'<%="RTAttributeValueSingle)
| (™ AttributeValueDouble)
| AttributeValueSingle)

)

Name Eq

((& AttributeValueDouble)
| AttributeValueSingle)

)

AttributeValue | RTAttributeValue
AttributeValueDouble | AttributeValueSingle
RTAttributeValueDouble | RTAttributeValueSingle

(QuotedChar - ™)*
(" | <TRANSLATION_ERROR>)

(QuotedChar - “”)*
(“" | <TRANSLATION_ERROR>)

RTAttributeValueDouble::= ((QuotedChar - ")* -

((QuotedChar - "™)* '%>")
)
(’%>"" | <TRANSLATION_ERROR>)
[ve: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent |

RTAttributeValueSingle::= ((QuotedChar - “”)* -

Name

Char

((QuotedChar - “”)* '%>")

)
("%>"| <TRANSLATION_ERROR>)

[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

XML::Name

XML::Char

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-27

QuotedChar

''’
| ’"

| W

Y

|

| ¥

| (‘${' ELExpressionBody)
| Char

[vc: QuotedDollarMatched]

S XML::S

Eq XML::Eq

XML::CDSect

CDSect

JSP.1.3.10.2 Validity Constraints

Thefollowing validity constraints are referenced in the above grammar using the syn-
tax [vc: ValidityConstraint], and must be followed:

* ScriptingEnabled - The ScriptlessBody production must befollowed if scripting
isdisabled for thistrangation unit. See the scripting-invalid JSP Configuration
element (Section JSP.3.3.3).

* ScriptlessBody - The AllBody production cannot be followed if one of our par-
ent nodes in the parse tree is a ScriptlessBody production. That is, once we
have followed the ScriptlessBody production, until that production is complete
we cannot choose the AllBody production.

* ELEnabled - Thetoken ${ is not followed if expressions are disabled for this
tranglation unit. See the isELIgnored page and tag directive
(Section JSP.1.10.1 and Section JSP.8.5.1 respectively) and the el-ignored
JSP Configuration element (Section JSP.3.3.2).

* TagFileSpecificDirectives - The JSPDirectiveBody production must be followed
if the root production is JSPPage (i.e. thisis a JSP page). The TagDefDirec-
tiveBody production must be followed if the root production is JSPTagDef (i.e.
thisisatag file).

* TagFileSpecificXMLDirectives - The XMLJISPDirectiveBody production must be
followed if the root production is JSPPage (i.e. thisisa JSP page). The XMLT-
agDefDirectiveBody production must be followed if the root productionis
JSPTagDef (i.e. thisisatag file).

JavaServer Pages 2.0 Specification

1-28

CORE SYNTAX AND SEMANTICS

PageDirectiveUniqueAttr - A translation error will result if there is more than
one occurrence of any attribute defined by this directive in a given translation
unit, and if the value of the attribute is different than the previous occurrence.
No trangdlation error resultsif the valueisidentical to the previous occurrence.
In addition, the import and pageEncoding attributes are excluded from this
constraint (see Section JSP1.10.1).

TagLibDirectiveUniquePrefix - A trandation error will result if the prefix At-
tributeValue has already previously been encountered as a potential TagPrefix
in thistranglation unit.

TagDirectiveUniqueAttr - A trangd ation error will result if the prefix of thistag
directiveisaready defined in the current scope, and if that prefix isbound to a
namespace other than that specified by the uri or tagdir attribute.

UniqueAttributeName - A tranglation error will result if there are two or more
attribute directives with the same value for the name attribute in the same
trandation unit. A trandation error will result if there is avariable directive
with aname-given attribute equal to the value of the name attribute of an at-
tribute directive in the same translation unit.

UniqueVariableName - A translation error must occur if morethan one variable
directive appears in the same translation unit with the same value for the
name-given attribute or the same value for the name-from-attribute attribute. A
trandation error must occur if there is avariable directive with a name-given
attribute equal to the value of the name attribute of an attribute directivein the
same tranglation unit. A translation error must occur if thereis avariable di-
rective with a name-from-attribute attribute whose value is not equal to the
name attribute of an attribute directive in the same trandlation unit that is also
of type java.lang.String, that isrequired and that is not an rtexprvalue. A trans-
lation error must occur if the value of the alias attributeis equal to the value of
aname-given attribute of avariable directive, or the value of the name attribute
of an attribute directive in the same trandation unit.

TagFileSpecificActions - The invoke and doBody standard actions are only
matched if the JSPTagDef production was followed (i.e. if thisisatag filein-
stead of a JSP page).

RTAttributeScriptingEnabled - If the RTAttributeValueDouble or RTAttributeVal-
ueSingle productions are visited during parsing and scripting is disabled for
this page, atrandation error must be produced. See the scripting-invalid JSP
Configuration element (Section JSP.3.3.3).

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page 1-29

* ExpressionBodyContent - A tranglation error will result if the body content mi-
nus the closing delimiter (%>, or </jsp:expression>, depending on how the ex-
pression started) does not represent a well-formed expression in the scripting
language selected for the JSP page.

* StdActionAttributesValid - An attribute is considered “ provided” for this stan-
dard action if either the Attribute production or the AttributeBody production is
followed in the context of the enclosing StandardAction production. A transla-
tion error will result if any of the following conditionsis true:

- The set of attributes “provided” for this standard action does not match one
of the valid attribute combinations specified in Table JSP.1-5.

-+ The same attribute is “ provided” more than once, as determined by the at-
tribute name.

« Anattribute is“provided” using the AttributeBody production that does not
accept arequest-time expression value, as indicated by the = prefix in Table
JSP1-5.

* StdActionBodyMatch - The StdActionBody production will only be matched if
the production listed for this standard action in the“ Body Production” column
in Table JSP.1-5 isfollowed.

* AttributeBodyMatch - The type of element being specified determines which
production is followed (see Section JSP5.10, “<jsp:attribute>"for details):

- If acustom action that specifies an attribute of type JspFragment, Scriptless-
Body must be followed.

- If astandard or custom action that accepts a request-time expression value,
AllJspBody must be followed.

- |f astandard or custom action that does not accept arequest-time expression
value, TemplateTextBody must be followed.

 JspBodyBodyContent - The ScriptlessBody production must be followed if the
body content for thistag is scriptless. The Body production must be followed
if the body content for thistag is JSP. The TagDependentBody production
must be followed if the body content for thistag istagdependent.

* UniqueAttSpec - A trandation error will result if the same attribute name ap-
pears more than once.

¢ CustomActionMatchesAndValid - Following the rules in Section JSP.7.3 for de-
termining the relevant set of tags and tag libraries, assume the following:

- Let U bethe URI indicated by the uri AttributeValue of the previously encoun-

JavaServer Pages 2.0 Specification

1-30

CORE SYNTAX AND SEMANTICS

tered TagLibDirectiveAttrList with prefix matching the TagPrefix for this poten-
tial custom action, or nil if no such TagLibDirectiveAttrList was encounteredin
this trandation unit.

- If Uisnotnil, let L bethe<taglib> element intherelevant TLD entry such that
L.uriisequal to U.

Then:

- |If, after being parsed, the CustomAction production is matched (not yet tak-
ing into account the following rules), TagPrefix is considered a potential Tag-
Prefix in this trandation unit for the purposes of the
TagLibDirectiveUniquePrefix validity constraint.

- The CustomAction production will not be matched if U isnil or if the TagPre-
fix does not match the prefix AttributeValue of a TagLibDirectiveAttrList previ-
ously encountered in this translation unit.

- Otherwise, if the CustomAction production is matched, a trang ation error
will result if there does not exist a<tag> element T in arelevant TLD such
that L.T.name is equal to CustomActionName.

CustomActionTagDependentMatch - Assume the definition of L from the Cus-
tomActionMatchesAndValid validity constraint above. The CustomAction-
TagDependent production is not matched if there does not exist a <tag>
element T in arelevant TLD such that L.T.body-content contains the value
tagdependent.

CustomActionJSPContentMatch - Assume the definition of L from the Custom-
ActionMatchesAndValid validity constraint above. The CustomActionJSPCon-
tent production is not matched if there exists a<tag> element T in arelevant
TLD such that L.T.body-content does not contain the value JSP.

CustomActionScriptlessContentMatch - Assume the definition of L from the
CustomActionMatchesAndValid validity constraint above. The CustomAction-
ScriptlessContent production is not matched if there does not exist a <tag> el-
ement T in arelevant TLD such that L.T.body-content contains the value
scriptless.

QuotedDollarMatch - The ‘\$' token is only matched if EL isenabled for this
translation unit. See Section JSP.3.3.2, “ Deactivating EL Evaluation”.

ETagMatch - Assume the definition of U from the CustomActionMatchesAnd-
Valid validity constraint. If TagPrefix isnot ‘jsp’ and U is nil, the ETag produc-
tion is not matched. Otherwise, the ETag production is matched and a
tranglation error will result if the prefix and name of this closing tag does not
match the prefix and name of the starting tag at the corresponding nesting lev-

JavaServer Pages 2.0 Specification

Syntactic Elements of a JSP Page

el, or if thereis no corresponding nesting level (i.e. too many closing tags).
Thisissimilar to theway XML is defined, except that template text that looks
like aclosing element with an unrecognized prefix is allowed in the body of a
custom or standard action. In the following example, assuming ‘my’ isavalid
prefix and ‘indent’ isavalid tag, the tag is considered template text, and
no tranglation error is produced:

<my:indent level="2">

</my:indent>

Thefollowing example, however, would produce atranslation error, assuming
‘my’ isavalid prefix and ‘indent’ isavalid tag, and regardless of whether
‘othertag’ isavalid tag or not.

<my:indent level="2">
</my:othertag>
</my:indent>

 ExtraClosingTagMatch - The ExtraClosingTag production is not matched if en-
countered within two or more nested Body productions (e.g. if encountered in-
side the body of a standard or custom action).

JSP.1.3.10.3 Standard Action Attributes

Table JSP.1-5 specifies, for each standard action element, the bodies and the
attribute combinations that are valid. The value in the “Body Production” column
specifies a production name that must be matched for the body of the standard
action to be considered valid. The value in the “ Valid Attribute Combinations’
column uses the same syntax as the attrset notation described at the start of
Section JSP.1.3.10, and indicates which attributes can be provided. Note that for
some valid attribute combinations, there are differing body productions. The first

JavaServer Pages 2.0 Specification

1-31

1-32

CORE SYNTAX AND SEMANTICS

attribute combination to be matched selects the valid body production for this

standard action invocation.

Table JSP.1-5 Valid body content and attributes for Standard Actions

Element Body Production
jsp:useBean OptionalBody
OptionalBody
OptionalBody
OptionalBody
jsp:setProperty EmptyBody
EmptyBody
jsp:getProperty EmptyBody
jsp:include ParamBody
jsp:forward ParamBody
jsp:plugin PluginBody
jsp:invoke EmptyBody
EmptyBody
EmptyBody
jsp:doBody EmptyBody
EmptyBody
EmptyBody
jsp:element OptionalBody
jsp:output EmptyBody
EmptyBody
jsp:param EmptyBody

Valid Attribute Combinations

('id, scope, Iclass)

('id, scope, !type)

('id, scope, Iclass, !type)

('id, scope, =!lbeanName, !type)

('name, !property, param)
('name, !property, =lvalue)

('name, Iproperty)
(=!page, flush)

(=!page)

('type, !code, !codebase, align,
archive, =height, hspace,
jreversion, name, vspace, title,
=width, nspluginurl, iepluginurl,
mayscript)

('fragment, !var, scope)
('fragment, !varReader, scope)
(fragment)

('var, scope)
('varReader, scope)

0
(=!name)

(omit-xml-declaration)

(omit-xml-declaration,
Idoctype-root-element,
Idoctype-system, doctype-public)

('name, =!value)

JavaServer Pages 2.0 Specification

Error Handling

JSP.14 Error Handling

Errors may occur at trandation time or at request time. This section describes
how errors are treated by a compliant implementation.

JSP.1.4.1 Trandation Time Processing Errors

Thetrandation of a JSP page source into a corresponding JSP page implemen-
tation class by a JSP container can occur at any time between initial deployment of
the JSP page into the JSP container and the receipt and processing of aclient request
for thetarget JSP page. If trandation occurs prior to the receipt of aclient request for
the target JSP page, error processing and notification is implementation dependent
and not covered by this specification. In all cases, fatal trandation failures shall
result in the failure of subsequent client requests for the trand ation target with the
appropriate error specification: For HTTP protocols the error status code 500
(Server Error) is returned.

JSP.1.4.2 Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of
the JSP page implementation class, or in some other code (Java or other implemen-
tation programming language) called from the body of the JSP page implementation
class. Runtime errors accurring are realized in the page implementation, using the
Java programming language exception mechanism to signal their occurrence to
caller(s) of the offending behavior™.

These exceptions may be caught and handled (as appropriate) in the body of
the JSP page implementation class.

Any uncaught exceptions thrown in the body of the JSP page implementation
classresult in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the JSP page (or the implementation default behavior,
if noneis specified).

Information about the error is passed asjavax.servlet.ServietRequest attributes
to the error handler, with the same attributes as specified by the Servlet
specification. Names starting with the prefixes java and javax are reserved by the

 Note that thisisindependent of scripting language. This specification re-
quires that unhandled errors occurring in a scripting language environ-
ment used in a JSP container implementation to be signalled to the JSP
page implementation class via the Java programming language exception
mechanism.

JavaServer Pages 2.0 Specification

1-33

CORE SYNTAX AND SEMANTICS

different specifications of the Java platform. The javax.servlet prefix is reserved
and used by the servlet and JSP specifications.

JSP.1.4.3 Using JSPsasError Pages

A JSPisconsidered an Error Page if it setsthe page directive' sisErrorPage
attribute to true. If a page hasisErrorPage set to true, then the “exception” implicit
scripting language variable (see Table JSP.1-7) of that page isinitiaized. The
variable is set to the value of the javax.servlet.error.exception request attribute
valueif present, otherwise to the value of the javax.servlet.jsp.jspException reguest
attribute value (for backwards compatibility for JSP pages pre-compiled with a
JSP 1.2 compiler).

In addition, an ErrorData instance must be initialized based on the error
handler ServletRequest attributes defined by the Servlet specification, and made
available through the PageContext to the page. This has the effect of providing
easy accessto the error information viathe Expression Language. For example, an
Error Page can access the status code using the syntax ${pageContext.error-
Data.statusCode}. See Chapter JSP.12 for details.

JSP.1.5 Comments

There are two types of commentsin a JSP page: comments to the JSP page
itself, documenting what the page is doing; and comments that are intended to
appear in the generated document sent to the client.

JSP.1.5.1 Generating Commentsin Output to Client

In order to generate comments that appear in the response output stream to the
requesting client, the HTML and XML comment syntax is used, as follows:

<l-- comments ... -->

These comments are treated as uninterpreted template text by the JSP
container. Dynamic content that appears within HTML/XML comments, such as
actions, scriptlets and expressions, is till processed by the container. If the
generated comment is to have dynamic data, this can be obtained through an
expression syntax, asin:

<!-- comments <%= expression %> more comments ... -->

JavaServer Pages 2.0 Specification

Quoting and Escape Conventions

JSP.1.5.2 JSP Comments

A JSP comment is of theform
<%-- anything but a closing --%> ... --%>

The body of the content isignored completely. Comments are useful for
documentation but also are used to “comment out” some portions of a JSP page.
Note that JSP comments do not nest.

An aternative way to place acomment in JSPis to use the comment
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>

JSP.1.6 Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

Note — The current quoting rules do not allow for quoting specia characters
such as\n - the only current way to do thisin a JSP is with a Java expression.

Quoting in EL Expressions
- Thereisno specia quoting mechanism within EL expressions; use alitera
‘${ if theliteral ${ isdesired and expressions are enabled for the page. For

example, the evaluation of ${'${} is ‘${. Note that ${'}'} islegal, and simply
evaluatesto ‘}.

Quoting in Scripting Elements
- A literal %> is quoted by %\>
Quoting in Template Text

- A literal <% is quoted by <\%

- Only whentheEL isenabled for apage (see Section JSP.3.3.2, “ Deactivating
EL Evaluation”), aliteral $ can be quoted by \$. Thisis not required but is
useful for quoting EL expressions.

JavaServer Pages 2.0 Specification

1-35

1-36

CORE SYNTAX AND SEMANTICS

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute valueisa

literal or areguest-time attribute expression. Quoting can be used in attribute
values regardless of whether they are delimited using single or double quotes. Itis
only required as described below.

- A‘isquoted asV. Thisis required within a single quote-delimited attribute
vaue.

- A “isquoted as\". Thisisrequired within adouble quote-delimited attribute
value.

- A\isquoted as\\

- Only whenthe EL isenabled for apage (see Section JSP.3.3.2, “ Deactivating
EL Evaluation”), aliteral $ can be quoted by \$. Thisis not required but is
useful for quoting EL expressions.

- A %> isquoted as %\>
- A <% isquoted as <\%

- The entities ' and " are available to describe single and double
quotes.

Examples
Thefollowing line shows an illegal attribute values.
<mytags:tag value="<%= "hi!" %>" />

Thefollowing line shows alegal scriptlet, but perhaps with an intended value.

Theresult is Joe said %\> not Joe said %>.

<%= "Joe said %\\>" %>

The next lines are al legal quotations.
<%= "Joe said %/>" %>
<%= "Joe said %\>" %>

<% String joes_statement = "hi!"; %>
<%= "Joe said \"" + joes_statement + "\"." %>
<x:tag value='<%="Joe said \\"" + joes_statement + "\"."%>'/>

JavaServer Pages 2.0 Specification

Overall Semantics of a JSP Page

<x:tag value='<%= "hi!" %>' />

<x:tag value="<%=\"hi'\" %>" />

<x:tag value='<%= \"name\" %>' />

<x:tag value="<%=\"Joe said 'hello'\" %>"/>
<x:tag value="<%=\"Joe said \\\"hello\\" \" %>"/>
<x:tag value="end expression %\>"/>

<% String s="abc"; %>
<x:tag value="<%=s + \"def\" + \"jkI\" + 'm" + \'n\' %>" />
<x:tag value='<%=s + \"def\" + "jkI" + \'m\' + \'n\' %>' />

XML Documents

The quoting conventions are different from those of XML. See Chapter JSP.6.

JSP.1.7 Overall Semantics of a JSP Page

A JSP page implementation class definesa_jspService() method mapping from
the request to the response object. Some details of this transformation are specific to
the scripting language used (see Chapter JSP9). Most details are not language spe-
cific and are described in this chapter.

The content of a JSP page is devoted largely to describing the datathat is
written into the output stream of the response. (The JSP container usually sends
this data back to the client.) The description is based on a JspWriter object that is
exposed through the implicit object out (see Section JSP.1.8.3, “Implicit
Objects’). Itsvalue varies:

* Initially, out isanew JspWriter object. This object may be different from the
stream object returned from response.getWriter(), and may be considered to be
interposed on the latter in order to implement buffering (see
Section JSP.1.10.1, “The page Directive”). Thisistheinitial out object. JSP
page authors are prohibited from writing directly to either the Printwriter or
OutputStream associated with the ServletResponse.

« The JSP container should not invoke response.getWriter() until the time when
thefirst portion of the content isto be sent to the client. This enables anumber
of uses of JSP, including using JSP as alanguageto “glue” actionsthat deliver

JavaServer Pages 2.0 Specification

1-37

1-38

CORE SYNTAX AND SEMANTICS

binary content, or reliably forwarding to a servlet, or change dynamically the
content type of the respose before generating content. See Chapter JSPA4.

» Within the body of some actions, out may be temporarily re-assigned to a dif-
ferent (nested) instance of aJspWriter object. Whether thisisthe case depends
on the details of the action’s semantics. Typically the content of these tempo-
rary streamsis appended to the stream previously referred to by out, and out is
subsequently re-assigned to refer to the previous (nesting) stream. Such nest-
ed streams are always buffered, and require explicit flushing to a nesting
stream or their contents will be discarded.

« If theinitial out JspWriter object is buffered, then depending upon the value of
the autoFlush attribute of the page directive, the content of that buffer will ei-
ther be automatically flushed out to the ServletResponse output stream to ob-
viate overflow, or an exception shall bethrown to signal buffer overflow. If the
initial out JspWriter is unbuffered, then content written to it will be passed di-
rectly through to the ServletResponse output stream.

A JSP page can aso describe what should happen when some specific events
occur. In JSP 2.0, the only events that can be described are the initialization and
the destruction of the page. These events are described using “well-known method
names’ in declaration elements. (See Section JSP11.1.1.1).

JSP.1.8 Objects

A JSP page can access, create, and modify server-side objects. Objects can be
made visible to actions, EL expressions and to scripting elements. An object has a
scope describing what entities can access the object.

Actions can access objects using a name in the PageContext object.

An object exposed through a scripting variable has a scope within the page.
Scripting elements can access some objects directly viaascripting variable. Some
implicit objects are visible via scripting variables and EL expressionsin any JSP
page.

JSP.1.8.1 Objectsand Variables

An object may be made accessible to code in the scripting elements through a
scripting language variable. An element can define scripting variables that will con-
tain, at process request-time, areference to the object defined by the element,
although other references may exist depending on the scope of the object.

JavaServer Pages 2.0 Specification

Objects 1-39

An element type indicates the name and type of such variables although
details on the name of the variable may depend on the Scripting Language. The
scripting language may also affect how different features of the object are
exposed. For example, in the JavaBeans specification, properties are exposed via
getter and setter methods, while these properties are avail able directly as variables
in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language
specific. Chapter JSP.1.1 defines the rules for when the language attribute of the
page directive isjava.

JSP.1.8.2 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a
request. The JSP specification indicates that some objects are created implicitly,
perhaps as aresult of adirective (see Section JSP1.8.3, “Implicit Objects’). Other
objects are created explicitly through actions, or created directly using scripting
code. Created objects have a scope attribute defining where thereis areference to
the object and when that reference is removed.

The created objects may aso be visible directly to scripting elements through
scripting-level variables (see Section JSP.1.8.3, “Implicit Objects”).

Each action and declaration defines, as part of its semantics, what objects it
creates, with what scope attribute, and whether they are available to the scripting
elements.

Objects are created within a JSP page instance that is responding to a request
object. There are several scopes:

* page - Objectswith page scope are accessible only within the page where they
are created. All referencesto such an object shall be released after the response
is sent back to the client from the JSP page or the request is forwarded some-
where else. References to objects with page scope are stored in the pageCon-
text object.

* request - Objectswith request scope are accessible from pages processing the
same request where they were created. References to the object shall be re-
leased after the request is processed. In particular, if the request is forwarded
to aresource in the same runtime, the object is still reachable. References to
objects with request scope are stored in the request object.

* session - Objects with session scope are accessible from pages processing re-
guests that are in the same session as the one in which they were created. It is
not legal to define an object with session scope from within a page that is not

JavaServer Pages 2.0 Specification

1-40

CORE SYNTAX AND SEMANTICS

session-aware (see Section JSP.1.10.1, “The page Directive”). All references
to the object shall be released after the associated session ends. References to
objects with session scope are stored in the session object associated with the
page activation.

* application - Objects with application scope are accessible from pages process-
ing requeststhat arein the same application asthey oneinwhich they were cre-
ated. Objects with application scope can be defined (and reached) from pages
that are not session-aware. References to objects with application scope are
stored in the application object associated with a page activation. The applica-
tion object isthe servlet context obtained from the servlet configuration object.
All referencesto the object shall be released when the runtime environment re-
claims the ServletContext.

A name should refer to a unique object at all pointsin the execution; that is,
all the different scopes really should behave as a single name space. A JSP
container implementation may or may not enforce this rule explicitly for
performance reasons.

JSP.1.8.3 Implicit Objects

JSP page authors have access to certain implicit objects that are always avail-
able for use within scriptlets and scriptlet expressions through scripting variables
that are declared implicitly at the beginning of the page. All scripting languages are
required to provide access to these objects. See Section JSP2.2.3 for theimplicit
objects available within EL expressions. Implicit objects are available to tag han-
dlers through the pageContext object, see below.

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet APl package, as shown in Table JSP.1-6.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable

Name Type Semantics & Scope

request protocol dependent subtype of: The request triggering
javax.servlet.ServletRequest the service invocation.
eg: request Scope.

javax.servlet.http.HttpServletRequest

JavaServer Pages 2.0 Specification

Objects 1-41

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable

Name Type Semantics & Scope

response protocol dependent subtype of:

javax.servlet.ServletResponse, €.0:

The response to the
request.

pageContext

session

application

out

config

page

javax.servlet.http.HttpServletResponse page scope.

javax.servlet.jsp.PageContext

javax.servlet.http.HttpSession

javax.servlet.ServletContext

javax.servlet.jsp.JspWriter

javax.servlet.ServletConfig

java.lang.Object

The page context for this
JSP page.
page SCope.

The session object
created for the requesting
client (if any).
Thisvariableisonly
validfor HTTP
protocols.

session scope

The servlet context
obtained from the servlet
configuration object
(asinthecall getServlet-
Config().

getContext())

application scope

An object that writesinto
the output stream.
page scope

The ServletConfig for
this JSP page
page scope

The instance of this
page's implementation
class processing the
current request®

page scope

a When the scripting language is java then page is a synonym for this in the
body of the page.

JavaServer Pages 2.0 Specification

1-42 CORE SYNTAX AND SEMANTICS

In addition, the exception implicit object can be accessed in an error page, as
described in Table JSP.1-7.

Table JSP.1-7 Implicit Objects Available in Error Pages

Variable
Name Type Semantics & Scope
exception java.lang.Throwable The uncaught Throwable

that resulted in the error
page being invoked.
page scope.

Object names with prefixesjsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

See Section JSP.7.5.1 for some non-normative conventions for the
introduction of new implicit objects.

JSP.1.8.4 The pageContext Object

A PageContext isan object that provides acontext to store references to objects
used by the page, encapsulates implementation-dependent features, and provides
convenience methods. A JSP page implementation class can use a PageContext to
run unmodified in any compliant JSP container while taking advantage of imple-
mentati on-specific improvements like high performance JspWwriters.

See Chapter JSP.12 for more details.

JSP.1.9 Template Text Semantics

The semantics of template (or uninterpreted) Text isvery simple: the template
text is passed through to the current out Jspwriter implicit object, after applying the
substitutions of Section JSP.1.6, “Quoting and Escape Conventions”.
JSP.1.10 Directives

Directives are messages to the JSP container. Directives have this syntax:
<%@ directive { attr="value” }* %>
There may be optional white space after the <%@ and before %>.

JavaServer Pages 2.0 Specification

Directives 1-43

This syntax is easy to type and concise but it is not XML-compatible.
Chapter JSP.6 describes equivalent alternative mechanisms that are consistent
with XML syntax.

Directives do not produce any output into the current out stream.

There are three directives. the page and the taglib directives are described
next, while the include directive is described in “ The include Directive’ on

page 51.

JSP.1.10.1 The page Directive

The page directive defines a number of page dependent properties and commu-
nicates these to the JSP container.

This <jsp:directive.page> element (Section JSP.6.3.4) describes the same
information following the XML syntax.

A trandation unit (JSP source file and any files included viathe include
directive) can contain more than one instance of the page directive, all the
attributes will apply to the complete translation unit (i.e. page directives are
position independent). An exception to this position independence isthe use of the
pageEncoding and contentType attributes in the determination of the page
character encoding; for this purpose, they should appear at the beginning of the
page (see Section JSP4.1). There shall be only one occurrence of any attribute/
value pair defined by this directive in agiven trand ation unit, unlessthe valuesfor
the duplicate attributes are identical for all occurrences. The import and pageEn-
coding attributes are exempt from this rule and can appear multiple times.
Multiple uses of the import attribute are cumulative (with ordered set union
semantics). The pageEncoding attribute can occur at most once per file (or a
tranglation error will result), and applies only to thefile in which it appears. Other
such multiple attribute/value (re)definitions result in afatal translation error if the
values do not match.

The attribute/val ue namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal tranglation errors.

Examples

The following directive provides some user-visible information on this JSP
page:

<%@ page info="my latest JSP Example” %>

JavaServer Pages 2.0 Specification

1-44

CORE SYNTAX AND SEMANTICS

The following directive requests no buffering, and provides an error page.
<%@ page buffer="none” errorPage="/oops.jsp” %>

The following directive indicates that the scripting language is based on Java,
that the types declared in the package com.myco are directly available to the
scripting code, and that a buffering of 16KB should be used.

<%@ page language="java” import="com.myco.*" buffer="16kb” %>
Syntax
<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language="scriptingLanguage”}
{ extends="className”
{ import="importList”
{ session="true|false”
{ buffer="none|sizekb”
{ autoFlush="true|false”
{ isThreadSafe="true|false”
{ info="info_text"
{ errorPage="error_url”
{ isErrorPage="true|false”
{ contentType="ctinfo”
{ pageEncoding="peinfo”
{ isELIgnored="true|false”

e e e e e e e e e e

JavaServer Pages 2.0 Specification

Directives 1-45

The details of the attributes are as follows:

Table JSP.1-8 Page Directive Attributes

language Defines the scripting language to be used in the scriptlets,
expression scriptlets, and declarations within the body of the
tranglation unit (the JSP page and any filesincluded using
the include directive below).
In JSP 2.0, the only defined and required scripting language
value for this attribute is java.
This specification only describes the semantics of scripts for
when the value of the language attribute isjava.
When java is the value of the scripting language, the Java
Programming L anguage source code fragments used within
the tranglation unit are required to conform to the Java
Programming Language Specification in the way indicated
in Chapter JSP.9.
All scripting languages must provide some implicit objects
that a JSP page author can usein declarations, scriptlets, and
expressions. The specific objects that can be used are defined
in Section JSP.1.8.3, “Implicit Objects’.”
All scripting languages must support the Java Runtime
Environment (JRE). All scripting languages must expose the
Java technology object model to the script environment,
especially implicit variables, JavaBeans component
properties, and public methods.
Future versions of the JSP specification may define
additional values for the language attribute and all such
values are reserved.
It isafatal trandation error for adirective with a non-java
language attribute to appear after the first scripting element
has been encountered.
Default isjava.

extends The valueisafully qualified Java programming language
class name, that names the superclass of the classto which
this JSP page is transformed (see Chapter JSP.11).
This attribute should not be used without careful
consideration asit restricts the ability of the JSP container to
provide specialized superclasses that may improve on the
quality of rendered service. See Section JSP.7.5.1 for an
aternate way to introduce objects into a JSP page that does
not have this drawback.

JavaServer Pages 2.0 Specification

1-46

CORE SYNTAX AND SEMANTICS

Table JSP.1-8 Page Directive Attributes

import

session

buffer

Animport attribute describes the types that are available to
the scripting environment. The valueis asin an import
declaration in the Java programming language, a (comma
separated) list of either afully qualified Java programming
language type name denoting that type, or of apackage name
followed by the .* string, denoting all the public types
declared in that package. The import list shall be imported
by the translated JSP page implementation and is thus
available to the scripting environment.

The default import list isjava.lang.*, javax.servlet.*,
javax.servlet.jsp.* and javax.servlet.http.*.

Thisattribute is currently only defined when the value of the
language directive isjava.

Indicates that the page requires participationin an (HTTP)
session.

If true then the implicit script language variable named ses-
sion of type javax.servlet.http.HttpSession references the
current/new session for the page.

If false then the page does hot participate in a session; the
session implicit variable is unavailable, and any reference to
it within the body of the JSP pageisillegal and shall result in
afatal trandlation error.

Default istrue.

Specifies the buffering model for the initial out Jspwriter to
handle content output from the page.

If none, then there is no buffering and all output is written
directly through to the ServletResponse PrintWriter.

The size can only be specified in kilobytes. The suffix kb is
mandatory or atransation error must occur.

If abuffer size is specified then output is buffered with a
buffer size not less than that specified.

Depending upon the value of the autoFlush attribute, the
contents of this buffer is either automatically flushed, or an
exception is raised, when overflow would occur.

The default is buffered with an implementation buffer size of
not less than 8kb.

JavaServer Pages 2.0 Specification

Directives

Table JSP.1-8 Page Directive Attributes

autoFlush

isThreadSafe

info

isErrorPage

Specifies whether the buffered output should be flushed
automatically (true value) when the buffer isfilled, or
whether an exception should be raised (false value) to
indicate buffer overflow. Itisillegal, resulting in atranslation
error, to set autoFlush to false when buffer=none. The default
valueistrue.

Note: The Serviet 2.4 specification deprecates
SingleThreadModel, which isthe most common
mechanism for JSP containersto implement isThreadSafe.
Page authors are advised against using isThreadSafe, as
the generated Serviet may contain deprecated code.

Indicates the level of thread safety implemented in the page.
If false then the JSP container shall dispatch multiple
outstanding client requests, one at atime, in the order they
were received, to the page implementation for processing.
If true then the JSP container may choose to dispatch
multiple outstanding client requests to the page
simultaneously.

Page authors using true must ensure that they properly
synchronize access to the shared state of the page.

Default istrue.

Note that even if the isThreadSafe attribute is false the JSP
page author must ensure that accesses to any shared objects
are properly synchronized., The objects may be shared in
either the ServletContext or the HttpSession.

Defines an arbitrary string that is incorporated into the
translated page, that can subsequently be obtained from the
page's implementation of Servlet.getServletinfo method.

Indicatesif the current JSP pageisintended to be the URL
target of another JSP page's errorPage.

If true, then the implicit script language variable exception is
defined and its value is areference to the offending
Throwable from the source JSP pagein error.

If false then the exception implicit variable is unavailable,
and any reference to it within the body of the JSP pageis
illegal and shall result in afatal translation error.

Default isfalse.

JavaServer Pages 2.0 Specification

1-47

1-48

CORE SYNTAX AND SEMANTICS

Table JSP.1-8 Page Directive Attributes

errorPage

contentType

Definesa URL to aresource to which any Java programming
language Throwable object(s) thrown but not caught by the
page implementation are forwarded for error processing.
The provided URL specisasin Section JSP1.2.1.

If the URL names another JSP page then, when invoked that
JSP page’s exception implicit script variable shall contain a
reference to the originating uncaught Throwable.

The default URL isimplementation dependent.

Note the Throwable object is transferred by the throwing
page implementation to the error page implementation by
saving the object reference on the common ServietRequest
object using the setAttribute method, with a name of
javax.servlet.jsp.jspException (for backwards-compatibility)
and also javax.servlet.error.exception (for compatibility with
the servlet specification). See Section JSP.1.4.3 for more
details).

Note: if autoFlush=true then if the contents of the initial Jsp-
Writer has been flushed to the ServletResponse output stream
then any subsequent attempt to dispatch an uncaught
exception from the offending page to an errorPage may fail.
If the page defines an error page viathe page directive, any
error pages defined in web.xml will not be used.

Defines the MIME type and the character encoding for the
response of the JSP page, and is also used in determining the
character encoding of the JSP page.

Values are either of the form “TYPE” or “TYPE;char-
set=CHARSET”with an optional white space after the“;”.
“TYPE” isaMIME type, seethe IANA registry at http://
www.iana.org/assignments/media-types/index.html for useful
values. “CHARSET”, if present, must be the IANA name for
a character encoding.

The default value for “TYPE” is “text/html” for JSP pagesin
standard syntax, or “text/xml” for JSP documentsin XML
syntax. If “CHARSET” is not specified, the response
character encoding is determined as described in

Section JSP4.2, “Response Character Encoding”.

See Chapter JSP4 for complete details on character
encodings.

JavaServer Pages 2.0 Specification

Directives

1-49

Table JSP.1-8 Page Directive Attributes

pageEncoding

isELIgnored

Describesthe character encoding for the JSP page. Thevalue
isof the form “CHARSET”, which must be the IANA name
for a character encoding. For JSP pages in standard syntax,
the character encoding for the JSP page is the charset given
by the pageEncoding attriute if it is present, otherwise the
charset given by the contentType attribute if it is present,
otherwise “1S0O-8859-1".

For JSP documentsin XML syntax, the character encoding
for the JSP page is determined as described in section 4.3.3
and appendix F.1 of the XML specification. The pageEncod-
ing attribute is not needed for such documents. It isa
tranglation-time error if adocument names different
encodingsinits XML prolog / text declaration and in the
pageEncoding attribute. The corresponding JSP
configuration element is page-encoding (see

Section JSP.3.3.4, “ Declaring Page Encodings’).

See Chapter JSP.4 for compl ete details on character
encodings.

Defines whether EL expressions are ignored or evaluated for
this page and trand ation unit. If true, EL expressions (of the
form ${...}) areignored by the container. If false, EL
expressions (of the form ${...}) are evaluated when they
appear in template text or action attributes. The
corresponding JSP configuration element is el-ignored (see
Section JSP.3.3.2). The default val ue varies depending on the
web.xml version - see Section JSP.2.2.4, “ Deactivating EL
Evaluation”.

JSP.1.10.2

Thetaglib Directive

The set of significant tags a JSP container interprets can be extended through a

tag library.

Thetaglib directive in a JSP page declares that the page uses atag library,
uniquely identifies the tag library using a URI and associates atag prefix that will
distinguish usage of the actionsin the library.

If a JSP container implementation cannot locate atag library description, a
fatal trandlation error shall result.

It isafatal trandation error for the taglib directive to appear after actions or
functions using the prefix.

JavaServer Pages 2.0 Specification

1-50 CORE SYNTAX AND SEMANTICS

A tag library may include a validation method that will be consulted to
determineif a JSP pageis correctly using the tag library functionality.

See Chapter JSP.7 for more specification details. And see Section JSP.7.2.3
for an implementation note.

Section JSP.6.3.1 describes how the functionality of this directive can be
exposed using XML syntax.

Examples
In the following example, atag library isintroduced and made available to
this page using the super prefix; no other tag libraries should be introduced in

this page using this prefix. In this particular case, we assume the tag library
includes a doMagic element type, which is used within the page.

<%@ taglib uri="http://www.mycorp/supertags” prefix="super” %>

<super:doMagic>

</super:doMagic>
Syntax
<%@ taglib (uri="tagLibraryURI” | tagdir="tagDir") prefix="tagPrefix” %>

where the attributes are:

Table JSP.1-9

uri Either an absolute URI or arelative URI specification that
uniquely identifies the tag library descriptor associated with
this prefix.

The URI isused to locate a description of thetag library as
indicated in Chapter 7.

JavaServer Pages 2.0 Specification

Directives 1-51

Table JSP.1-9

tagdir Indicates this prefix is to be used to identify tag extensions
installed in the /WEB-INF/tags/ directory or a subdirectory.
Animplicit tag library descriptor isused (see Section JSP.8.4
for details). A trandation error must occur if the value does
not start with /WEB-INF/tags/. A trandation error must occur
if the value does not point to adirectory that exists. A
trandation error must occur if used in conjunction with the
uri attribute.

prefix Definesthe prefix string in <prefix>:<tagname> that isused to
distinguish a custom action, e.g <myPrefix:myTag>.
Prefixes starting with jsp:, jspx:, java:, javax:, servlet:, sun:,
and sunw: are reserved.
A prefix must follow the naming convention specified in the
XML namespaces specification.
Empty prefixes areillegal in this version of the specification,
and must result in atranglation error.

A fatal trandation-time error will result if the JSP page trandlator encounters a
tag with name prefix: Name using a prefix that is introduced using the taglib
directive, and Name is not recognized by the corresponding tag library.

JSP.1.10.3 Theinclude Directive

Theinclude directive is used to substitute text and/or code at JSP page tranda
tion-time. The <%@ include file="relativeURLspec” %> directive inserts the text of
the specified resource into the page or tag file. The included fileis subject to the
access control available to the JSP container. Thefile attributeisasin
Section JSP1.2.1.

With respect to the standard and XML syntaxes, afile included viathe include
directive can use either the same syntax as the including page, or a different
syntax. the semantics for mixed syntax includes are described in
Section JSP1.10.5.

A JSP container can include amechanism for being notified if an included file
changes, so the container can recompile the JSP page. However, the JSP 2.0
specification does not have away of directing the JSP container that included files
have changed.

The <jsp:directive.include> element (Section JSP.6.3.5) describes the same
information following the XML syntax.

JavaServer Pages 2.0 Specification

1-52 CORE SYNTAX AND SEMANTICS

Examples

The following example requests the inclusion, at trand ation time, of a copy-
right file. The file may have elements which will be processed too.

<%@ include file="copyright.html” %>

Syntax

<%@ include file="relativeURLspec" %>

JSP.1.10.4 Implicit Includes

Many JSP pages start with alist of taglib directives that activate the use of tag
libraries within the page. In some cases, these are the only tag libraries that are sup-
posed to be used by the JSP page authors. These, and other common cornventions are
greately facilitated by two JSP configuration e ements: include-prelude and include-
coda. A full description of the mechanism isin Section JSP.3.3.5.

With respect to the standard and XML syntaxes, just as with the include
directive, implicit includes can use either the same syntax as the including page,
or adifferent syntax. The semantics for mixed syntax includes are described in
Section JSP.1.10.5.

JSP.1.10.5 Including Datain JSP Pages

Including datais asignificant part of the tasks in a JSP page. Accordingly, the
JSP 2.0 specification has two include mechanisms suited to different tasks. A sum-
mary of their semanticsis shown in Table JSP.1-10.

Table JSP.1-10 Summary of Include Mechanismsin JSP 2.0

Syntax Spec Object Description Section
Include Directive - Translation-time

<%@ include file=... %> file- static Content isparsed JSP1.10.3
relative by JSP container.

Include Action - Request-time

<jsp:include page= /> page- static Content is not JSP5.4
relative and dynamic parsed;itis
included in place.

JavaServer Pages 2.0 Specification

Directives

The Spec column describes what type of specification isvalid to appear in the
given element. The JSP specification requires arelative URL spec. The reference
isresolved by the web/application server and its URL map isinvolved. Include
directives are interpreted relative to the current JSP file; jsp:include actions are
interpreted relative to the current JSP page.

Aninclude directive regards aresource like a JSP page as a static object; i.e.
the text in the JSP page isincluded. An include action regards a resource like a
JSP page as adynamic object; i.e. the request is sent to that object and the result of
processing it isincluded.

Implicit include directives can also be requested for a collection of pages
through the use of the <include-prelude> and <include-coda> elements of the JSP
configuration section of web.xml.

For trand ation-time includes, included content can use either the same syntax
astheincluding page, or adifferent syntax. For example, a JSP file written in the
standard JSP syntax can include a JSP file written using the XML syntax. The
following semantics for translation-time includes apply:

» The JSP container must detect the syntax for each JSP file individually and
parse each JSP file according to the syntax in which it iswritten.

» A JSPfilewritten using the XML syntax must be well-formed according to
the"XML" and "Namespacesin XML" specifications, otherwise atranslation
error must occur.

* When including a JSP document (written in the XML syntax), in the resulting
XML View of the trandlation unit the root element of the included segment
must have the default namespace reset to "". Thisis so that any namespaces
associated with the empty prefix in the including document are not carried
over to the included document.

» When ataglib directive is encountered in a standard syntax page, the
namespace is applied globally, and is added to the <jsp:root> element of the
resulting XML View of the translation unit.

« If ataglib directive is encountered in a standard syntax page that attempts to
redefine aprefix that isalready defined in the current scope (by a JSP segment
in either syntax), atrandation error must occur unlessthat prefix is being re-
defined to the same namespace URI.

See Section JSP.10.3 for examples of how these semantics are applied to
actual JSP pages and documents.

JavaServer Pages 2.0 Specification

1-53

CORE SYNTAX AND SEMANTICS

JSP.1.10.6 Additional Directivesfor Tag Files

Additiona directives are available when editing atag file. See Section JSP.8.5,
“Tag File Directives’ for details.

JSP.1.11 EL Elements

EL expressions can appear in template data and in attribute values. EL expres-
sions adefined in more detail in Chapter 2.

EL expressions can be disabled through the use of JSP configuration elements
and page directives; see Section JSP.1.10.1 and Section JSP.3.3.2.

EL expressions, when not disabled, can be used anywhere within template
data.

EL expressions can be used in any attribute of a standard action that this
specification indicates can accept arun-time expression value, and in any attribute
of a custom action that has been indicated to accept run-time expressions (i.e.
their associated <rtexprvalue> in the TLD istrue; see Appendix JSP.C).

JSP.1.12 Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform
computation that affects the content generated.

JSP 2.0 adds EL expressions as an aternative to scripting elements. These are
described in more detail in Chapter JSP.2. Note that scripting elements can be
disabled through the use of the scripting-invalid el ement in the web.xml deployment
descriptor (see Section JSP.3.3.3).

There are three other classes of scripting elements: declarations, scriptlets
and expressions. The scripting language used in the current page is given by the
value of the language directive (see Section JSP.1.10.1, “ The page Directive’). In
JSP 2.0, the only value defined is java.

Declarations are used to declare scripting language constructs that are
available to all other scripting elements. Scriptlets are used to describe actions to
be performed in response to some request. Scriptlets that are program fragments
can also be used to do things like iterations and conditional execution of other
elements in the JSP page. Expressions are compl ete expressions in the scripting
language that get evaluated at response time; commonly, the result is converted
into a string and inserted into the output stream.

JavaServer Pages 2.0 Specification

Scripting Elements 1-55

All JSP containers must support scripting elements based on the Java
programming language. Additionally, JSP containers may also support other
scripting languages. All such scripting languages must support:

e Manipulation of Java objects.
* Invocation of methods on Java abjects.

* Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements
based on the Java programming language is given in Chapter JSP.9.

The semantics for other scripting languages are not precisely defined in this
version of the specification, which means that portability across implementations
cannot be guaranteed. Precise definitions may be given for other languages in the
future.

Each scripting element has a <%-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after <%!, <%, and <%=, and before %>.
The equivalent XML elements for these scripting elements are described in
Section JSP6.3.7.

JSP.1.12.1 Declarations

Declarations are used to declare variables and methods in the scripting language
used in aJSP page. A declaration must be a compl ete declarative statement, or
sequence thereof, according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP pageisinitialized and are made
available to other declarations, scriptlets, and expressions.

The <jsp:declaration> element (Section JSP.6.3.7) describes the same
information following the XML syntax.

Examples

For example, the first declaration below declares an integer, global to the
page. The second declaration doesthe same and initializesit to zero. Thistype
of initialization should be done with care in the presence of multiple requests

JavaServer Pages 2.0 Specification

1-56

CORE SYNTAX AND SEMANTICS

on the page. The third declaration declares a method global to the page.
<%! int i; %>

<%! inti=0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax

<%! declaration(s) %>

JSP.1.12.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting lan-
guage specified in the language attribute of the page directive. Whether the code
fragment islegal depends on the details of the scripting language (see
Chapter JSP9).

Scriptlets are executed at request-processing time. Whether or not they
produce any output into the out stream depends on the code in the scriptlet.
Scriptlets can have side-effects, modifying the objects visible to them.

When all scriptlet fragments in a given trandation unit are combined in the
order they appear in the JSP page, they must yield avalid statement, or sequence
of statements, in the specified scripting language.

To use the %> character sequence as literal charactersin a scriptlet, rather
than to end the scriptlet, escape them by typing %\>.

The <jsp:scriptlet> element (Section JSP.6.3.7) describesthe sameinformation
following the XML syntax.

Examples

Here is a simple example where the page changed dynamically depending on
the time of day.

<% if (Calendar.getinstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning

<% } else { %>

Good Afternoon

<% } %>

JavaServer Pages 2.0 Specification

Scripting Elements 1-57

A scriptlet can aso have aloca variable declaration, for example the following
scriptlet just declares and initializes an integer, and later incrementsit.

<% inti; i= 0; %>
About to increment i...
<% i++ %>

Syntax

<% scriptlet %>

JSP.1.12.3 Expressions

An expression element in a JSP page is a scripting language expression that is
evaluated and the result is coerced to a String. The result is subsequently emitted
into the current out JspWriter object.

If the result of the expression cannot be coerced to a String the following must
happen: If the problem is detected at tranglation time, atrang ation time error shall
occur. If the coercion cannot be detected during translation, a ClassCastException
shall be raised at request time.

A scripting language may support side-effects in expressions when the
expression is evaluated. Expressions are evaluated |eft-to-right in the JSP page. If
an expression appears in more than one run-time attribute, they are evaluated | eft-
to-right in the tag. An expression might change the value of the out object,
athough thisis not something to be done lightly.

The expression must be a complete expression in the scripting language in
which it iswritten, or atrandation error must occur.

Expressions are evaluated at request processing time. The value of an
expression is converted to a String and inserted at the proper position in the .jsp
file.

The <jsp:expression> element (Section JSP.6.3.7) describes the same
information following the XML syntax.

Examples

This example inserts the current date.

<%= (new java.util.Date()).toLocaleString() %>

JavaServer Pages 2.0 Specification

1-58

CORE SYNTAX AND SEMANTICS

Syntax

<%= expression %>

JSP.1.13 Actions

Actions may affect the current out stream and use, modify and/or create objects.
Actions may depend on the details of the specific request object received by the JSP
page.

The JSP specification includes some actions that are standard and must be
implemented by all conforming JSP containers; these actions are described in
Chapter 5.

New actions are defined according to the mechanisms described in Chapters 7
and 13 and are introduced using the taglib directive.

The syntax for action elementsis based on XML. Actions can be empty or
non-empty.

JSP.1.14 Tag Attribute I nter pretation Semantics

Theinterpretation of all actions start by evaluating the values given to its
attributes left to right, and assigning the values to the attributes. In the process some
conversions may be applicable; the rules for them are described in
Section JSP1.14.2.

Many values are fixed translation-time values, but JSP 2.0 also provides a
mechanism for describing values that are computed at request time, the rules are
described in Section JSP1.14.1.

JSP.1.14.1 Request Time Attribute Values

An attribute value of the form “<%-= scriptlet_expr %>" or
‘<%= scriptlet_expr %>’ denotes a request-time attribute value. The value denoted
isthat of the scriptlet expression involved. If Expression Language evaluation is
not deactivated for the trandlation unit (see Section JSP.3.3.2, “ Deactivating EL
Evaluation”) then request-time attribute values can also be specified using the EL
using the syntax ‘${el_expr} or “${el_expr}". Containers must also recognize
multiple EL expressions mixed with optional string constants. For example,
“Version ${ major} .${ minor} Installed” isavalid request-time attribute value.

JavaServer Pages 2.0 Specification

Tag Attribute Interpretation Semantics 1-59

Request-time attribute values can only be used in actions. If a request-time
attribute value is used in a directive, atranslation error must occur. If there are
more than one such attribute in atag, the expressions are evaluated | eft-to-right.

Quotation is done as in any other attribute value (Section JSP.1.6).

Only attribute values can be denoted this way (the name of the attribute is
aways an explicit name). When using scriptlet expressions, the expression must
appear by itself (multiple expressions, and mixing of expressions and string
constants are not permitted). Multiple operations must be performed within the
expression. Type conversions are described in Section JSP.1.14.2.

By default, except in tag files, al attributes have page trandlation-time
semantics. Attempting to specify a scriptlet expression or EL expression asthe
value for an attribute that (by default or otherwise) has page trandlation time
semanticsisillegal, and will result in afatal tranglation error. The type of an
action element indicates whether a given attribute will accept request-time
attribute values.

Most attributes in the standard actions from Chapter 5 have page trandl ation-
time semantics, but the following attributes accept request-time attribute
expressions:

e Thevalue attribute of jsp:setProperty (Section JSP.5.2).

* The beanName attribute of jsp:useBean (Section JSP5.1).

» The page attribute of jsp:include (Section JSP.5.4).

e The page attribute of jsp:forward (Section JSP.5.5).

The value attribute of jsp:param (Section JSP5.6).

The height and width attributes of jsp:plugin (Section JSP.5.7).
The name attribute of jsp:element (Section JSP.5.14).

JSP.1.14.2 Type Conversions

We describe two cases for type conversions

JSP.1.14.2.1 Conversionsfrom String values

A string value can be used to describe a value of a non-String type through a
conversion. Whether the conversionis possible, and, if so, what isit, dependson
atarget type.

String values can be used to assign values to atype that has a PropertyEditor
class asindicated in the JavaBeans specification. When that is the case, the setAs-

JavaServer Pages 2.0 Specification

1-60

CORE SYNTAX AND SEMANTICS

Text(String) method is used. A conversion failure arises if the method throws an
lllegalArgumentException.

String values can also be used to assign to the types as listed in Table JSP.1-
11. The conversion applied is that shown in the table.

A conversion failure leads to an error, whether at trandlation time or request-

time.

Table JSP.1-11 Conversions from string values to target type

Target Type

Bean Property

boolean or
Boolean

byte or Byte

char or Character
double or Double
int or Integer
float or Float
long or Long

short or Short

Object

Source String Value

As converted by the corresponding PropertyEditor, if any,
using PropertyEditor.setAsText(string-literal) and Proper-
tyEditor.getValue(). If thereis no corresponding PropertyEdi-
tor or the PropertyEditor throws an exception, ‘null’ if the
string is empty, otherwise error.

Asindicated in java.lang.Boolean.valueOf(String). This
results in ‘false’ if the String is empty.

Asindicated in java.lang.Byte.valueOf(String), or ‘(byte) 0’ if
the string is empty.

Asindicated in String.charAt(0), or ‘(char) 0’ if the string is
empty.

Asindicated in java.lang.Double.valueOf(String), or O if the
string is empty.

Asindicated in java.lang.Integer.valueOf(String), or 0 if the
string is empty.

Asindicated in java.lang.Float.valueOf(String), or O if the
string is empty.

Asindicated in java.lang.Long.valueOf(String), or O if the
string is empty.

Asindicated in java.lang.Short.valueOf(String), or 0 if the
string is empty.

Asif new String(string-literal). This results in new String(“*)
if the string is empty.

These conversions are part of the generic mechanism used to assign values
to attributes of actions: when an attribute value that is not a request-time

JavaServer Pages 2.0 Specification

Tag Attribute Interpretation Semantics

attribute is assigned to a given attribute, the conversion described here is used,
using the type of the attribute as the target type. The type of each attribute of the
standard actions is described in this specification, while the types of the
attributes of a custom action are described in its associated Tag Library Descrip-
tor.

A given action may also define additional ways where type/value conver-
sions are used. In particular, Section JSP.5.2 describes the mechanism used for
the setProperty standard action.

JSP.1.14.2.2 Conversionsfrom request-time expressions

Request-time expressions can be assigned to properties of any type. In the
case of scriptlet expressions, no automatic conversions will be performed. In the
case of EL expressions, the rulesin Section JSP.2.8, “ Type Conversion” must be
followed.

JavaServer Pages 2.0 Specification

1-61

1-62 CORE SYNTAX AND SEMANTICS

JavaServer Pages 2.0 Specification

cuneren JOP.2

Expression Language

T his chapter describes the expression language used by JSP 2.0. The expres-
sioin language isindependent of JSP details except for the set of implicit objects.
The language was initially defined by the JSP StandardTag Library (JSTL) 1.0
specification, but is now incorporated in the JSP specification, and extended with
new features. A JSTL maintenance release (JSTL 1.1) alignsitself with the JSP
2.0 version of the language. The JavaServer Faces expert group (JSR-127) isaso
considering to use this expression language.

The language semantics are exposed through an API described in the
javax.servlet.jsp.el package. The main use of this APl isto implement the JSP 2.0
language in a JSP container, but it may be used by JSP devel opers, most likely tag
hander authors.

Sections JSP.2.1 and JSP.2.2 describe how the expression language is used in
JSP 2.0 while sections JSP.2.3 to JSP.2.9 provide the generic description of the
expression language. The API to the expression language is described in full in
Chapter JSP.14.

JSP.2.1 Overview

The EL isasimple language based on:

Available namespace (the PageContext attributes)

Nested properties and accessors to collections

Relational, logical and arithmetic operators.

Extensible functions mapping into static methods in Java classes.

A set of implicit objects

JavaServer Pages 2.0 Specification

1-63

EXPRESSION LANGUAGE

The EL isinspired by both ECMA Script and the X Path expression languages.
The expert groups of JSR-052 and JSR-152 were very reluctant to design yet
another expression language and tried to use each of these languages but both
were found to fall short in different areas. The feedback received from users of
JSTL 1.0 has been very positive.

The EL isavailablein attribute values for standard and custom actions and
within template text; in both cases the EL isinvoked consistently viathe construct
${expr}.

The addition of the EL to the JSP technology facilitates much the writing of
script-less JSP pages. These pages can use EL expressions but can't use Java
scriptlets, Java expressions, or Java declaration elements. This usage pattern can
be enforced through the scripting-invalid JSP configuration element.

JSP.2.2 The Expression Languagein JSP 2.0

The expression languageis used in anumber of places within the JSP 2.0 lan-
guage.

JSP.2.2.1 Expressions and Attribute Values

EL expressions can be used in any attribute that can accept a run-time expres-
sion, beit astandard action or a custom action (see the section below on backward
compatibility issues).

There are three use cases for expressionsin attribute values:

» The attribute value contains a single expression construct
<some:tag value="${expr}"/>

In this case, the expression is evaluated and the result is coerced to the at-
tribute's expected type according to the type conversion rules described | ater.

 The attribute value contains one or more expressions separated or surrounded
by text:

<some:tag value="some${expri${expritext${expr}'/>

In this case, the expressions are evaluated from left to right, coerced to Strings
(according to the type conversion rules described later), and concatenated

JavaServer Pages 2.0 Specification

The Expression Language in JSP 2.0 1-65

with any intervening text. The resulting String isthen coerced to the attribute's
expected type according to the type conversion rules described later.

 The attribute value contains only text:
<some:tag value="sometext"/>

In this case, the attribute's String value is coerced to the attribute's expected
type according to the type conversion rules described in Section JSP.2.8.
These rules are equivalent to the JSP 1.2 conversions, except that empty
strings are treated differently.

JSP.221.1 Examples

The following shows a conditional action that usesthe EL to test whether a
property of abean islessthan 3.

<c:if test="${beanl.a < 3}">

;}c:if>

Note that the normal JSP coercion mechanism aready allows for:
<mytags:if test="true" />

There may be literal values that include the character sequence ${. If that is
the case, aliteral with that value can be used as shown here:

<mytags:example code="an expression is ${'${"}expr}" />

The resulting attribute value would then be the string an expression is ${expr}.

JSP.2.2.2 Expressionsand Template Text

The EL can be used directly in templatetext, beit inside the body of acustom or
standard actions or in template text outside of any action. Exceptions are if the body
of thetag istagdependent, or if EL isturned off (usually for compatibility issues)
explicitly through a directive or implicitly; see below.

The semantics of an EL expression are the same as with Java expressions: the
valueis computed and inserted into the current output. In cases where escaping is
desired (for example, to help prevent cross-site scripting attacks), the JSTL core
tag <c:out> can be used. For example:

JavaServer Pages 2.0 Specification

1-66

EXPRESSION LANGUAGE

<c:out value="${anELexpression}” />

JSP.2.22.1 Examples
The following shows a custom action where two EL expressions are used to
access bean properties:

<c:wombat>
One value is ${beanl.a} and another is ${bean2.a.c}
</c:wombat>

JSP.2.2.3 Implicit Objects

There are several implicit objects that are available to EL expressions used in
JSP pages. These objects are always available under these names:

 pageContext - the PageContext object

* pageScope - aMap that maps page-scoped attribute names to their values
* requestScope - aMap that maps request-scoped attribute namesto their values
* sessionScope - aMap that maps session-scoped attribute namesto their values

* applicationScope - a Map that maps application-scoped attribute namesto
their values

 param - aMap that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name))

* paramValues - a Map that maps parameter names to a String[] of all valuesfor
that parameter (obtained by calling ServletRequest.getParameterValues(String
name))

* header - aMap that maps header names to a single String header value (ob-
tained by calling ServletRequest.getHeader(String name))

* headerValues - aMap that maps header names to a String[] of all values for
that header (obtained by calling ServietRequest.getHeaders(String))

* cookie - a Map that maps cookie names to a single Cookie object. Cookies are
retrieved according to the semantics of HttpServletRequest.getCookies(). If the
same name is shared by multiple cookies, an implementation must use the

first one encountered in the array of Cooki e objects returned by the getCook-

ies() method. However, users of the cookie implicit object must be aware that
the ordering of cookiesis currently unspecified in the servlet specification.

JavaServer Pages 2.0 Specification

General Syntax of the Expression Language 1-67

* initParam - a Map that maps context initialization parameter names to their
String parameter value (obtained by calling ServletContext.getInitParame-
ter(String name))

The following table shows some examples of using these implicit objects:

Table JSP.2-1 Examples of Using Implicit Objects

Expression Result

${pageContext.request.requestURI} The request's URI (obtained from HttpS-
ervletRequest)

${sessionScope.profile} The session-scoped attribute named pro-
file (null if not found)

${param.productid} The String value of the productld
parameter, or null if not found

${paramValues.productld} The String[] containing all values of the
productld parameter, or null if not found

JSP.2.2.4 Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications
before JSP 2.0, there may be situations where such a pattern appears but the inten-
tion isnot to activate EL expression evaluation but rather to pass through the pattern
verbatim. To addressthis, the EL evaluation machinery can be deactivated as indi-
cated in Section JSP.3.3.2, “Deactivating EL Evaluation”.

JSP.2.25 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodol ogy where scripting el ements are not allowed. See
Section JSP3.3.3, “Disabling Scripting Elements’ for more details.

JSP.2.3 General Syntax of the Expression Language
JSP containers are required to produce a trandation error when a syntacticaly

invalid EL expression is encountered in an attribute value or within template text.
The syntax of an EL expression is described in detail in this section.

JavaServer Pages 2.0 Specification

1-68

EXPRESSION LANGUAGE

JSP.2.3.1 Overview

The syntax is quite simple. Variables are accessed by name. A generalized []
operator can be used to access maps, lists, arrays of objects and properties of a Java
Beans object; the operator can be nested arbitrarily. The . operator can be used asa
convenient shorthand for property access when the property name follows the con-
ventions of Javaidentifiers, but the [] operator allows for more generaized access.

Relational comparisons are allowed using the standard Java relational
operators. Comparisons may be made against other values, or against boolean (for
equality comparisons only), String, integer, or floating point literals. Arithmetic
operators can be used to compute integer and floating point vliaues. Logical
operators are available.

JSP.2.3.2 Literals

There are literals for boolean, integer, floating point, string, null.

» Boolean - true and false
* Integer - As defined by the IntegerLiteral construct in Section JSP.2.9

* Floating point - As defined by the FloatingPointLiteral construct in
Section JSP2.9

 String - With single and double quotes - " is escaped as\", ' isescaped as\', and
\ is escaped as\\. Quotes only need to be escaped in a string value enclosed in
the same type of quote

* Null - null

JSP.2.3.3 Errors, Warnings, Default Values

JSP pages are mostly used in presentation, and in that usage, experience sug-
geststhat it is most important to be able to provide as good a presentation as possi-
ble, even when there are smple errorsin the page. To meet this requirement, the EL
does not provide warnings, just default values and errors. Default values are type-
correct values that are assigned to a subexpression when there is some problem. An
error is an exception thrown (to be handled by the standard JSP machinery).

JSP.2.34 Operators"[]" and " ."
The EL follows ECMA Script in unifying the treatment of the . and [] operators.

JavaServer Pages 2.0 Specification

General Syntax of the Expression Language 1-69

expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the identifier
identifier-b is used to construct aliteral whose value isthe identifier, and then the[]
operator is used with that value.

To evaluate expr-a[expr-b]:

» Evaluate expr-a into value-a
e |f value-a isnull, return null.
» Evaluate expr-b into value-b
e If value-b isnull, return null.
o If value-a isaMap, List, or array:

- If value-a isaMap:

* |f lvalue-a.containsKey(value-b) then return null.
» Otherwise, return value-a.get(value-b)
- If value-a isalList or array:

* Coerce value-b to int (using coercion rules)
 If coercion couldn't be performed: error

* Then, if value-a.get(value-b) or Array.get(value-a, value-b) throws ArrayIn-
dexOutOfBoundsException or IndexOutOfBoundsException: return null

» Otherwisg, if value-a.get(value-b) or Array.get(value-a, value-b) throws oth-
er exception, error

» Otherwise, return value-a.get(value-b) or Array.get(value-a, value-b), as ap-
propriate.

» Otherwise (a JavaBeans object), coerce value-b to String

- If value-b is areadable property of value-a, as per the JavaBeans specifica
tion:

« |f getter throws an exception: error
» Otherwise: return result of getter call
- Otherwise: error.

JSP.2.35 Arithmetic Operators

Arithmeticis provided to act on integer (Biginteger and Long) and floating point
(BigDecimal and Double) values. There are 5 operators:

e Addition: +
» Substraction: -

JavaServer Pages 2.0 Specification

1-70 EXPRESS ON LANGUAGE

* Multiplication: *
* Division: / and div
* Remainder (modulo): % and mod
The last two operators are available in both syntaxes to be consistent with
XPath and ECMA Script.

The evaluation of arithmetic operatorsis described in the following sections.
A and B are the evaluation of subexpressions

JSP.2.35.1 Binary operators- A {+,-*} B

» |f A and B arenull, return (Long) O

If A or B isaBigDecimal, coerce both to BigDecimal and then:
- |f operator is+, return A.add(B)

- |f operator is -, return A.subtract(B)

- |f operator is*, return A.multiply(B)

If A or B isaFloat, Double, or String containing ., e, or E:

- If A or BisBiginteger, coerce both A and B to BigDecimal and apply operator.
- Otherwise, coerce both A and B to Double and apply operator

If A or B isBiglnteger, coerce both to Biglnteger and then:
- |f operator is+, return A.add(B)

- |f operator is -, return A.subtract(B)

- |f operator is*, return A.multiply(B)

Otherwise coerce both A and B to Long and apply operator

If operator resultsin exception, error

JSP.2.35.2 Binary operator - A {/,div} B

* |f A and B arenull, return (Long) O

 If A or B isaBigDecimal or aBiginteger, coerce both to BigDecimal and return
A.divide(B, BigDecimal.ROUND_HALF_UP).

» Otherwise, coerce both A and B to Double and apply operator

* If operator resultsin exception, error

JavaServer Pages 2.0 Specification

General Syntax of the Expression Language 1-71

JSP.2.35.3 Binary operator - A {%,mod} B

If A and B are null, return (Long) 0

If A or B isaBigDecimal, Float, Double, Or String containing ., e, or E, coerce
both A and B to Double and apply operator

If A or B isaBiglinteger, coerce both to Biginteger and return A.remainder(B).

Otherwise coerce both A and B to Long and apply operator

If operator results in exception, error

JSP.2.354 Unary minusoperator - -A

If A'isnull, return (Long) 0

 If A isaBigDecimal or Biginteger, return A.negate().

If A isasString:

- If A contains ., e, or E, coerce to aDouble and apply operator
- Otherwise, coerce to aLong and apply operator
- If operator results in exception, error
» |f A isByte, Short, Integer, Long, Float, Double
- Retain type, apply operator
- If operator resultsin exception, error
» Otherwise, error

JSP.2.35.5 Relational Operators
Therelational operators are:

* == and eq
e I=andne
 <andlt
e >and gt
e <=andle

* >=andge

JavaServer Pages 2.0 Specification

1-72 EXPRESS ON LANGUAGE

The second versions of the last 4 operators are made avail able to avoid having
to use entity referencesin XML syntax and have the exact same behavior, i.e. <
behaves the same as It and so on.

The evaluation of relational operatorsis described in the following sections.

JSP.2356 A{<><=>=lt,gtlegel B

 If A==B, if operator is <=, le, >=, or ge return true. Otherwise return false
e If Alisnull or B isnull, return false

 If A or B isBigDecimal, coerce both A and B to BigDecimal and use the return
value of A.compareTo(B).

* If A or B isFloat or Double coerce both A and B to Double apply operator

« If A or B isBiginteger, coerce both A and B to Biginteger and use the return
value of A.compareTo(B).

» If A or B isByte, Short, Character, Integer, or Long coerce both A and B to
Long and apply operator

 If A or B is String coerce both A and B to String, compare lexically
* If A isComparable, then:

« If A.compareTo (B) throws exception, error.
+ Otherwise use result of A.compareTo(B)
« If B is Comparable, then:

- |f B.compareTo (A) throws exception, error.
- Otherwise use result of B.compareTo(A)

Otherwise, error
JSP.235.7 A{==l!=eq,ne} B

 If A==B, apply operator
e If Alisnull or B isnull return false for == or eq, true for != or ne.
» If A or B isBigDecimal, coerce both A and B to BigDecimal and then:

- |f operator is== or eq, return A.equals(B)
- If operator is!= or ne, return !A.equals(B)
 If A or B isFloat or Double coerce both A and B to Double, apply operator

JavaServer Pages 2.0 Specification

General Syntax of the Expression Language

* If A or B isBiginteger, coerce both A and B to Biginteger and then:

- If operator is== or eq, return A.equals(B)
- If operator is!= or ne, return !A.equals(B)

» If A or B isByte, Short, Character, Integer, or Long coerce both A and B to
Long, apply operator

 If A or B isBoolean coerce both A and B to Boolean, apply operator
 If A or B is String coerce both A and B to String, compare lexically
» Otherwiseif an error occurs while calling A.equals(B), error

» Otherwise, apply operator to result of A.equals(B)
JSP.2.3.6 Logical Operators
Thelogical operators are;

e && and and
e ||andor

* !'and not
The evaluation of logical operatorsis described in the following sections.
JSP.2.3.6.1 Binary operator - A {&&,|,and,or} B

 Coerce both A and B to Boolean, apply operator

The operator stops as soon as the expression can be determined, i.e., A and B
and Cand D —if B isfase, then only A and B is evaluated.

JSP.2.3.6.2 Unary not operator - {!,not} A
» Coerce A to Boolean, apply operator

JSP.2.3.7 Empty Operator - empty A

The empty operator is a prefix operator that can be used to determineif avalue
isnull or empty.
To evaluate empty A

JavaServer Pages 2.0 Specification

1-73

1-74 EXPRESS ON LANGUAGE

If A isnull, return true,

Otherwise, if A isthe empty string, then return true.

Otherwise, if A isan empty array, then return true.

Otherwise, if A isan empty Map, return true,

Otherwise, if A isan empty Collection, return true,

Otherwise return false.

JSP.2.3.8 Conditional Operator -A?B: C

Evaluate B or C, depending on the result of the evaluation of A.

¢ Coerce A to Boolean:

- |f A istrue, evaluate and return B
- |f A isfalse, evaluate and return C

JSP.2.3.9 Parentheses

Parentheses can be used to change precedence, asin: ${ (a* (b +c)) }

JSP.2.3.10 Operator Precedence
Highest to lowedt, |eft-to-right.

* .

* 0

* - (unary) not ! empty
e */div % mod

¢ + - (binary)

e <><=>=ltgtlege

e ==l=eqne

* && and

e || or

« ?:

JavaServer Pages 2.0 Specification

Reserved Words 1-75

JSP.2.4 Reserved Words

The following words are reserved for the language and should not be used as
identifiers.

and eq gt true instanceof
or ne le false empty
not It ge null div mod

Note that many of these words are not in the language now, but they may bein
the future, so devel opers should avoid using these words now.

JSP.25 Named Variables

A core concept in the EL isthe evaluation of avariable nameinto an object. The
EL API provides a generalized mechanism, a VariableResolver, that will resolve
names into objects. The default resolver iswhat is used in the evaluation of EL
expressionsin template and attributes. This default resolver provides the implicit
objects mentioned in Section JSP.2.2.3. The default resolver also providesamap for
other identifiers by looking up its value as an attribute, according to the behavior of
PageContext.findAttribute(String) on the pageContext object. For example:

${product}

This expression will look for the attribute named product, searching the page,
reguest, session, and application scopes, and will returnitsvalue. If the attributeis
not found, null is returned.

Note that an identifier that matches one of the implicit objects described inthe
next section will return that implicit object instead of an attribute value.

See Chapter JSP.14 for further details on the VariableResolver and how it fits
with the evaluation API.

JSP.2.6 Functions

The EL has qualified functions, reusing the notion of qualification from XML
namespaces (and attributes), XSL functions, and JSP custom actions. Functions
are mapped to public static methods in Java classes. In JSP 2.0 themap is
specified inthe TLD.

JavaServer Pages 2.0 Specification

1-76

EXPRESSION LANGUAGE

JSP.2.6.1 I nvocation Syntax

The full syntax isthat of qualified n-ary functions:
ns:f(al,a2, ..., an)

Aswith therest of EL, this element can appear in attributes and directly in
template text.

The prefix ns must match the prefix of atag library that contains afunction
whose hame and signature matches the function being invoked (f), or atrandation
error must occur. If the prefix is omitted, the tag library associated with the default
namespace is used (thisis only possible in JSP documents).

In the following standard syntax example, funcl is associated with some-
taglib:

<%@ taglib prefix="some” uri="http://acme.com/some-taglib” %>
${some:funcl(true)}

In the following JSP document example, both func2 and func3 are associated
with default-taglib:

<some:tag xmlins="http://acme.com/default-taglib”
xmins:some="http://acme.com/some-taglib”
xmins:jsp="http://java.sun.com/JSP/Page”>
<some:other value="${func2(true)}">
${func3(true)}
</some:other>
</some:tag>

JSP.2.6.2 Tag Library Descriptor Information

Each tag library may include zero or more n-ary (static) functions. The Tag
Library Descriptor (TLD) associated with atag library lists the functions.

Each such function is given aname (as seen in the EL), and a static method in
a specific class that will implement the function. The class specified inthe TLD
must be a public class, and must be specified using a fully-qualified class name
(including packages). The specified method must be a public static method in the
specified class, and must be specified using a fully-qualified return type followed
by the method name, followed by the fully-qualified argument typesin
parenthesis, separated by commas (see the XML Schemain Appendix JSP.C for a
full description of this syntax). Failure to satisfy these requirements shall result in
atrand ation-time error.

JavaServer Pages 2.0 Specification

Functions 1-77

A tag library can have only one function element in the same tag library with
the same value for their name element. If two functions have the same name, a
tranglation-time error shall be generated.

Reference the function element in Section JSPC.1, “XML Schemafor TLD,
JSP 2.0 for how to specify afunction inthe TLD.

JSP.2.6.3 Example

Thefollowing TLD fragment describes a function with name nickname that is
intended to fetch the nickname of the user:

<taglib>

<function>
<name>nickname</name>
<function-class>mypkg.MyFunctions</function-class>
<function-signature>

java.lang.String nickName(java.lang.String)

</function-signature>

</function>

</taglib>

The following EL fragment shows the invocation of the function:

<h2>Dear ${my:nickname(user)}</h2>

JSP.26.4 Semantics
» If thefunction has no prefix, the default namespace is used. If the function has
aprefix, assume the namespace as that associated with the prefix.

L et ns be the namespace associated with the function, and f be the name of the
function.

» Locatethe TLD associated with ns. If none can be found, this shall be atrans-
|ation-time error.

L ocatethe function element with aname subelement with valuefin that TLD.
If none can be found, this shall be a trans ation-time error.

* Locate the public class with name equal to the value of the function-class €le-
ment. L ocate the public static method with name and signature equal to the

JavaServer Pages 2.0 Specification

1-78 EXPRESS ON LANGUAGE

value of the function-signature element. If any of these don't exist, atranda-
tion-time error shall occur..

 Evaluate each argument to the corresponding type indicated in the signature

 Evaluate the public static Java method. The resulting valueis the value re-
turned by the method evaluation, or null if the Java method is declared to re-
turn void. If an exception is thrown during the method evaluation, the
exception must be wrapped in an ELException and the ELException must be
thrown.

JSP.2.7 Implicit Objects

The EL defines a set of implicit objects which depends on the context in which
the EL isbeing used. When an expression references one of these objects by name,
the appropriate object is returned instead of the corresponding attribute. For exam-
plein the context of JSP pages, ${pageContext} returns the PageContext object,
even if thereis an existing pageContext attribute containing some other value. See

Section JSP2.2.3 for details.

JSP.2.8 Type Conversion

Every expression is evaluated in the context of an expected type. The result of
the expression evaluation may not match the expected type exactly, so the rules
described in the following sections are applied:

JSP.2.8.1 ToCoerceaVaueX toTypeY

« If X isof aprimitivetype, Let X’ be the equivalent “boxed form” of X.
Otherwise, Let X' be the same as X.

« If Y isof aprimitive type, Let Y’ be the equivalent “boxed form” of .
Otherwise, Let Y’ bethesameas Y.

» Apply the rulesin Sections JSP.2.8.2-JSP.2.8.6 for coercing X’ to Y'.

« If Y isaprimitive type, then theresult is found by "unboxing" the result of the
coercion. If the result of the coercion is null, then error.

* If Y isnot aprimitive type, then the result is the result of the coercion.

JavaServer Pages 2.0 Specification

Type Conversion

For example, if coercing an int to a String, "box" theint into an Integer and
apply therule for coercing an Integer to a String. Or if coercing a String to a dou-
ble, apply the rule for coercing a String to a Double, then "unbox" the resulting
Double, making sure the resulting Double isn’t actually nul | .

JSP.2.8.2 Coerce A to String

If A isString: return A

Otherwise, if A isnull: return "™

Otherwise, if A.toString() throws an exception, error

» Otherwise, return A.toString()

JSP.2.8.3 Coerce A to Number type N

e [f Aisnullor ™, return 0.

If A isCharacter, convert A to new Short((short)a.charValue()), and apply the
following rules.

* If A isBoolean, then error.
 If A isNumber typeN, return A
* If A isNumber, coerce quietly to type N using the following algorithm:

- If N isBiginteger

« If A isaBigDecimal, return A.toBiginteger()
» Otherwise, return Biginteger.valueOf(A.longValue())

- If N isBigDecimal,

* |f AisaBiginteger, return new BigDecimal(A)
» Otherwise, return new BigDecimal(A.doubleValue())

- |f N isByte, return new Byte(A.byteValue())

- |f N is Short, return new Short(A.shortValue())

- |f N isInteger, return new Integer(A.intValue())

- If N isLong, return new Long(A.longValue())

- |f N isFloat, return new Float(A.floatValue())

- |f N isDouble, return new Double(A.doubleValue())
- Otherwise, error.

JavaServer Pages 2.0 Specification

1-79

1-80 EXPRESS ON LANGUAGE

* If A isString, then:

- If N isBigDecimal then:

* If new BigDecimal(A) throws an exception then error.
» Otherwise, return new BigDecimal(A).

- If N isBiginteger then:

* |f new Biginteger(A) throws an exception then error.
» Otherwise, return new Biginteger(A).

- If N.valueOf(A) throws an exception, then error.
- Otherwise, return N.valueOf(A).
* Otherwise, error.

JSP.2.8.4 Coerce A to Character

o If Alisnull or ", return (char) 0
¢ |f A isCharacter, return A
* |f A isBoolean, error

 If A isNumber, coerce quietly to type Short, then return a Character whose
numeric valueis equivalent to that of a Short.

 |If A isString, return A.charAt (0)

* Otherwise, error

JSP.2.8.5 Coerce A to Boolean

e If Alisnull or ", return false
e Otherwise, if A isaBoolean, return A

» Otherwise. if A isaString, and Boolean.valueOf(A) does not throw an excep-
tion, return it

¢ Otherwise, error

JSP.2.8.6 Coerce A to Any Other TypeT

e If Aisnull, return null

» If Aisassignableto T, coerce quietly

JavaServer Pages 2.0 Specification

Collected Syntax 1-81

If A isasString, and T has no PropertyEditor:

- If Alis™, return null
- Otherwise error

If A isastring and T's PropertyEditor throws an exception:

- If Ais"™, return null
- Otherwise, error
» Otherwise, apply T's PropertyEditor

o Otherwise, error

JSP.2.9 Collected Syntax

The following are the constructs supported by the EL :

Expression := Expressionl ExpressionRest?
ExpressionRest n= ‘? Expression ' Expression
Expressionl = Expression BinaryOp Expression

| UnaryExpression

JavaServer Pages 2.0 Specification

1-82

BinaryOp n=

UnaryExpression =

UnaryOp =

Value n=

ValuePrefix n=

ValueSuffix =

Identifier n=

JavaServer Pages 2.0 Specification

EXPRESSION LANGUAGE

‘ge’

UnaryOp UnaryExpression
Value

o
‘not’
‘empty’

ValuePrefix
Value ValueSuffix

Literal

‘(" Expression ')

Identifier except for ImplicitObject
ImplicitObject

Functionlnvocation

‘. ldentifier
‘[' Expression '

Java language identifier

Collected Syntax

ImplicitObject

Functionlnvocation

Literal

BooleanLiteral

StringLiteral

IntegerLiteral

FloatingPointLiteral

Exponent

NullLiteral

1-83

'‘pageContext’

| ‘pageScope’

| 'requestScope’
| ‘'sessionScope'
| ‘applicationScope’
| ‘'param’

| ‘'paramValues'
| ‘header'

| ‘'headerValues'
| ‘initParam’

| ‘'cookie'

(Identifier “:")? Identifier ‘("
(Expression (‘', Expression)*)? ‘)

BooleanLiteral
IntegerLiteral
FloatingPointLiteral
StringLiteral
NullLiteral

‘true’
| ‘false’

(VW)™
[(NI
i.e., a string of any characters enclosed by single
or double quotes, where \ is used to escape ', ",
and \. It is possible to use single quotes within

double quotes, and vice versa, without escaping.
[0-'9]+
(Lo-9]+ * (['0-'9'])* Exponent?
| 7 ([0-'9])+ Exponent?
| ([0-'9'])+ Exponent?
[e B[+ -])? (09

‘null’

JavaServer Pages 2.0 Specification

EXPRESSION LANGUAGE

Notes

» Anidentifier is constrained to be a Javaidentifier - e.g., no -, no/, etc.

» A String only recognizes a limited set of escape sequences, and \ may not ap-
pear unescaped.

» Therelational operator for equality is== (double equals).

» Thevalue of an IntegerLiteral ranges from Long.MIN_VALUE to
Long.MAX_VALUE

» Thevalue of aFloatingPointLiteral ranges from Double.MIN_VALUE to Dou-
ble.MAX_VALUE

JavaServer Pages 2.0 Specification

cineren JOP.3

JSP Configurati oﬁ

T his chapter describes the JSP configuration information, which is specified
in the Web Application Deployment Descriptor in WEB-INF/web.xml. As of Servlet
2.4, the Web Application Deployment Descriptor is defined using XML Schema,
and imports the el ements described in Section JSPB.1, “XML Schemafor JSP 2.0
Deployment Descriptor”. See that section for the details on how to specify JSP con-
figuration information in aWeb Application.

JSP.3.1 JSP Configuration Information in web.xml

A Web Application can include general JSP configuration informationin its
web.xml file that is to be used by the JSP container. The information is described
through the jsp-config element and its subelements.

The jsp-config element is a subelement of web-app that is used to provide
global configuration information for the JSP filesin aWeb Application. A jsp-con-
fig has two subelements: taglib and jsp-property-group, defining the taglib mapping
and groups of JSP files respectively.

JSP.3.2 Taglib Map

The web.xm file can include an explicit taglib map between URIsand TLD
resource paths described using taglib elements in the Web Application Deployment
descriptor.

Thetaglib element is a subelement of jsp-config that can be used to provide
information on atag library that is used by a JSP page within the Web
Application. The taglib element has two subelements: taglib-uri and taglib-location.

JavaServer Pages 2.0 Specification

1-85

1-86

JSP CONFIGURATION

A taglib-uri element describes a URI identifying atag library used in the web
application. The body of the taglib-uri element may be either an absolute URI
specification, or arelative URI asin Section JSP.1.2.1. There should be no
entries in web.xml with the same taglib-uri value.

A taglib-location €element contains a resource location (asindicated in
Section JSP.1.2.1) of the Tag Library Description File for the tag library.

JSP.3.3 JSP Property Groups

A JSP property group isacollection of propertiesthat apply to a set of filesthat
represent JSP pages. These properties are defined in one or more jsp-property-group
elementsin the Web Application deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation
unit, that is, the requested JSP file that is matched by its URL pattern and all the
filesit includes viathe include directive. The exception is the page-encoding
property, which applies separately to each JSP file matched by its URL pattern.

The applicability of aJSP property group is defined through one or more URL
patterns. URL patterns use the same syntax as defined in Chapter SRV.11 of the
Servlet 2.4 specification, but are bound at translation time. All the propertiesin
the group apply to the resources in the Web Application that match any of the
URL patterns. Thereis an implicit property: that of being a JSP file. JSP Property
Groups do not affect tag files.

If aresource matches a URL pattern in both a <servlet-mapping> and a <jsp-
property-group>, the pattern that is most specific applies (following the samerules
asinthe Servlet specification). If the URL patterns areidentical, the <jsp-property-
group> takes precedence over the <servlet-mapping>. If at least one <jsp-property-
group> contains the most specific matching URL pattern, the resourceis
considered to be a JSP file, and the propertiesin that <jsp-property-group> apply.
In addition, if aresourceis considered to be a JSP file, all include-prelude and
include-coda properties apply from al the <jsp-property-group> elements with
matching URL patterns (see Section JSP.3.3.5).

JSP.3.3.1 JSP Property Groups

A jsp-property-group is a subelement of jsp-config. The properties that can
currently be described in ajsp-property-group include:

JavaServer Pages 2.0 Specification

JSP Property Groups 1-87

Indicate that aresource is a JSP file (implicit).

Control disabling of EL evaluation.

Control disabling of Scripting elements.

Indicate page Encoding information.

Prelude and Coda automatic includes.

Indicate that aresource is a JSP document.

JSP.3.3.2 Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications
before JSP 2.0, there may be situations where such a pattern appears but the inten-
tionisnot to activate EL expression evaluation but rather to pass through the pattern
verbatim. To addressthis, the EL evaluation machinery can be deactivated as indi-
cated in this section.

Each JSP page has a default setting as to whether to ignore EL expressions.
When ignored, the expression is passed through verbatim. The default setting does
not apply to tag files, which always default to evaluating expressions.

The default mode for JSP pagesin aWeb Application delivered using a
web.xml using the Servlet 2.3 or earlier format isto ignore EL expressions; this
provides for backward compatibility.

The default mode for JSP pagesin aWeb Application delivered using a
web.xml using the Servlet 2.4 format is to evaluate EL expressions; this
automatically provides the default that most applications want.

The default mode can be explicitly changed by setting the value of the el-
ignored element. The el-ignored element is a subelement of jsp-property-group (see
Section JSP.3.3.1, “ JSP Property Groups'). It has no subelements. Itsvalid values
aretrue and false.

For example, the following web.xml fragment defines a group that deactivates
EL evauation for all JSP pages delivered using the .jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

Page authors can override the default mode through the isELIgnored attribute
of the page directive. For tag files, thereis no default, but theisELIgnored attribute
of the tag directive can be used to control the EL evaluation settings.

JavaServer Pages 2.0 Specification

1-88

Table JSP.3-1 summarizes the EL evaluation settings for JSP pages, and their

meanings:

JSP CONFIGURATION

Table JSP.3-1 EL Evaluation Settings for JSP Pages

JSP Configuration Page Directive

<el-ignored> isELIgnored EL Encountered

unspecified unspecified Ignored if <= 2.3 web.xml
Evaluated otherwise.

fase unspecified Evaluated

true unspecified Ignored

don’t care false Evaluated

don’t care true Ignored

Table JSP.3-2 summarizes the EL evaluation settings for tag files, and their

meanings:

Table JSP.3-2 EL Evaluation Settings for Tag Files

Tag Directive

iseLlgnored EL Encountered
unspecified Evaluated

false Evaluated

true Ignored

The EL evauation setting for atrandation unit also affects whether the\$
guote sequence is enabled for template text and attribute valuesin a JSP page,
document, or tag file. When EL evaluationis disabled, \$ will not be recognized as
aquote, whereas when EL evaluation is enabled, \$ will be recognized as a quote

for $. See Section JSP.1.6, “ Quoting and Escape Conventions” and
Section JSP.6.2.2, “Overview of Syntax of JSP Documents’ for detalils.

JavaServer Pages 2.0 Specification

JSP Property Groups

JSP.3.3.3 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodol ogy where scripting e ements are not allowed. Previ-
ous versions of JSP enabled this through the notion of a TagLibraryValidator that
would verify that the elements are not present. JSP 2.0 makesthis dightly easier
through a JSP configuration element.

The scripting-invalid element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are true and false. Scripting is enabled by
default. Disabling scripting elements can be done by setting the scripting-invalid
element to true in the JSP configuration.

For example, the following web.xml fragment defines a group that disables
scripting elements for all JSP pages delivered using the .jsp extension:

<jsp-property-group>

<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>
</jsp-property-group>

Table JSP.3-3 summarizes the scripting settings and their meanings.

Table JSP.3-3 Scripting Settings

JSP Configuration
<scripting-invalid> || Scripting Encountered

unspecified Valid
false Valid
true Trandglation Error

JSP.3.34 Declaring Page Encodings

The JSP configuration element page-encoding can be used to easily set the
pageEncoding property of agroup of JSP pages defined using the jsp-property-
group element. Thisis only needed for pages in standard syntax, since for
documentsin XML syntax the page encoding is determined as described in
section 4.3.3 and appendix F.1 of the XML specification.

The page-encoding element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are those of the pageEncoding page

JavaServer Pages 2.0 Specification

1-89

1-90

JSP CONFIGURATION

directive. It isatrandation-time error to name different encodings in the pageEn-
coding attribute of the page directive of a JSP page and in a JSP configuration
element matching the page. It is also atrandation-time error to name different
encodingsin the prolog / text declaration of the document in XML syntax and in a
JSP configuration element matching the document. It islegal to name the same
encoding through multiple mechanisms.

For example, the following web.xml fragment defines a group that explicitly
assigns shift_JIS to all JSP pages and included JSP segments in the /ja
subdirectory of the web application:

<jsp-property-group>
<url-pattern>/ja/*</url-pattern>
<page-encoding>Shift_JIS</page-encoding>
</jsp-property-group>

JSP.3.3.5 Defining Implicit Includes

Theinclude-prelude element is an optional subelement of jsp-property-group.
It has no subelements. Its value is a context-relative path that must correspond to
an element in the Web Application. When the element is present, the given path
will be automatically included (asin an include directive) at the beginning of the
JSP page in the jsp-property-group. When there are more than one include-prelude
element in a group, they are to be included in the order they appear. When more
than one jsp-property-group appliesto a JSP page, the corresponding include-
prelude elements will be processed in the same order as they appear in the JSP
configuration section of web.xml.

Theinclude-coda element is an optional subelement of jsp-property-group. It
has no subelements. Its value is a context-relative path that must correspond to an
element in the Web Application. When the element is present, the given path will
be automatically included (asin aninclude directive) at the end of the JSP pagein
the jsp-property-group. When there are more than one include-coda element in a
group, they are to be included in the order they appear. When more than one jsp-
property-group appliesto a JSP page, the corresponding include-coda €l ements
will be processed in the same order as they appear in the JSP configuration section
of web.xml. Note that these semantics are in contrast to the way url-patterns are
matched for other configuration elements.

Preludes and codas follow the same rules as statically included JSP segments.
In particular, start tags and end tags must appear in the samefile (see
Section JSP.1.3.3).

JavaServer Pages 2.0 Specification

JSP Property Groups 191

For example, the following web.xml fragment defines two groups. Together
they indicate that everything in directory /two/ have /IWEB-INF/jspf/preludel.jspf
and /WEB-INF/jspf/prelude2.jspf at the beginning and /WEB-INF/jspf/codal.jspf and
IWEB-INF/jspficoda2.jspf at the end, in that order, while other .jsp files only have
IWEB-INF/jspf/preludel.jspf at the beginning and /WEB-INF/jspf/codal.jspf at the
end.

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/preludel.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/codal.jspf</include-coda>
</jsp-property-group>

<jsp-property-group>
<url-pattern>/two/*</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude2.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/coda2.jspf</include-coda>
</jsp-property-group>

JSP.3.3.6 Denoting XML Documents

The JSP configuration element is-xml can be used to denote that a group of
files are JSP documents, and thus must be interpreted as XML documents.

Theis-xml element is a subelement of jsp-property-group (see 3.3.1). It hasno
subelements. Its valid values are true and false. When false, the filesin the
associated property group are assumed to not be JSP documents, unlessthereis
another property group that indicates otherwise. Thefiles are till considered to be
JSP pages due to the implicit property given by the <jsp-property-group> element.

For example, the following web.xml fragment defines two groups. The first
one indicates that those files with extension .jspx, which is the default extension
for JSP documents, are instead just plain JSP pages. The last group indicates that
files with extension .svg are actually JSP documents (which most likely are
generating SV G files).

<jsp-property-group>
<url-pattern>*.jspx</url-pattern>
<is-xml>false</is-xm|>

</jsp-property-group>

JavaServer Pages 2.0 Specification

1-92 JSP CONFIGURATION

<jsp-property-group>
<url-pattern>*.svg</url-pattern>
<is-xml>true</is-xml>

</jsp-property-group>

JavaServer Pages 2.0 Specification

cuneren JOP.4

| nternationalization | ssues

T his chapter describes requirements for internationalization with
JavaServer Pages 2.0 (JSP 2.0).

The JSP specification by itself does not provide a complete platform for
internationalization. It is complemented by functionality provided by the
underlying Java 2 Standard Edition platform, the Servlet APIs, and by tag libraries
such as the JSP Standard Tag Library (JSTL) with its collection of
internationalization and formatting actions. For complete information, see the
respective specifications. Referencesto JSTL areinformational - thislibrary isnot
required by the JSP 2.0 specification.

Primarily, this specification addresses the issues of character encodings.

The Java programming language represents characters internally using the
Unicode character encoding, which provides support for most languages. As of
J2SE 1.4, the Unicode 3.0 character set is supported. For storage and transmission
over networks, however, many other character encodings are used. The J2SE
platform therefore also supports character conversion to and from other character
encodings. Any Java runtime must support the Unicode transformations UTF-8,
UTF-16BE, and UTF-16LE aswell asthe ISO-8859-1 (L atin-1) character
encoding, but most implementations support many more. The character encodings
supported by Sun’s Java 2 Runtime Environment version 1.3 and version 1.4
respectively are described at:

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4/docs/guide/intl /encoding.doc.html

In JSP pages and in JSP configuration elements, character encodings are
named using the names defined in the IANA charset registry:

JavaServer Pages 2.0 Specification

1-93

1-94

INTERNATIONALIZATION ISSUES

http://www.iana.org/assignments/character-sets

JSP.4.1 Page Character Encoding

The page character encoding isthe character encoding in which the JSP page or
tag fileitsalf is encoded. The character encoding is determined for each file sepa-
rately, even if one file includes another using the include directive
(Section JSP1.10.3). A detailed algorithm for determining the page character
encoding of a JSP page or tag file can be found in Appendix JSP.D.

For JSP pages in standard syntax, the page character encoding is determined
from the following sources:

» A JSP configuration element page-encoding valuewhose URL pattern matches
the page.

» The pageEncoding attribute of the page directive of the page. It isatransla-
tion-time error to name different encodings in the pageEncoding attribute of
the page directive of a JSP page and in a JSP configuration element whose
URL pattern matches the page.

» The charset value of the contentType attribute of the page directive. Thisis
used to determine the page character encoding if neither a JSP configuration
element page-encoding nor the pageEncoding attribute are provided.

* If none of the above is provided, |SO-8859-1 is used as the default character
encoding.

For tag filesin standard syntax, the page character encoding is determined
from the pageEncoding attribute of the tag directive of thetag file, or is1SO-8859-
1 if the pageEncoding attribute is not specified.

The pageEncoding and contentType attributes determine the page character
encoding of only thefile that physically contains them. Parsers are only required
to take these attributes into consideration for character encoding detection if the
directive appears at the beginning of the page or tag file and if the character
encoding is an extension of ASCII, that is, if byte values 0 to 127 have the same
meaning asin ASCII, at least until the attributes are found. For character
encodings where thisis not the case (including UTF-16 and EBCDIC-based
encodings), the JSP configuration element page-encoding should be used.

For JSP documentsin XML syntax, the page character encoding is
determined as described in section 4.3.3 and appendix F.1 of the XML
specification. It islegal to also describe the character encoding in a JSP

JavaServer Pages 2.0 Specification

Response Character Encoding 1-95

configuration element page-encoding or a pageEncoding attribute of the page
directive of the document, aslong as they are consistent. It is atrandlation-time
error to name different encodings in two or more of the following: the XML
prolog / text declaration of a JSP document, the pageEncoding attribute of the
page directive of the JSP document, and in a JSP configuration element whose
URL pattern matches the document.

A JSP container must raise atranslation-time error if an unsupported page
character encoding is requested.

JSP.4.2 Response Character Encoding

The response character encoding is the character encoding of the response gen-
erated from a JSP page, if that responseisin the form of text. It is primarily man-
aged asthe javax.servlet.ServietResponse Object’s characterEncoding property.

The JSP container determines an initial response character encoding along
with the initial content type for a JSP page and calls ServietResponse.setContent-
Type() with thisinformation before processing the page. JSP pages can set initial
content type and initial response character encoding using the contentType
attribute of the page directive.

Theinitia response content type is set to the TYPE value of the contentType
attribute of the page directive. If the page doesn’t provide this attribute, the initial
content type is “text/html” for JSP pages in standard syntax and “text/xml!” for JSP
documentsin XML syntax.

Theinitial response character encoding is set to the CHARSET value of the
contentType attribute of the page directive. If the page doesn’t provide this
attribute or the attribute doesn’'t have a CHARSET value, the initial response
character encoding is determined as follows:

 For documentsin XML syntax, it iSUTF-8.

* For JSP pages in standard syntax, it isthe character encoding specified by the
pageEncoding attribute of the page directive or by a JSP configuration element
page-encoding whose URL pattern matches the page. Only the character en-
coding specified for the requested page is used; the encodings of filesincluded
viathe include directive are not taken into consideration. If there’s no such
specification, no initial response character encoding is passed to ServletRe-
sponse.setContentType() - the ServletResponse object’ sdefault, ISO-8859-1, is
used.

JavaServer Pages 2.0 Specification

1-96

INTERNATIONALIZATION ISSUES

After theinitial response character encoding has been set, the JSP page's
content can dynamically modify it by calling the ServletResponse object’s set-
CharacterEncoding and setLocale methods directly or indirectly. A number of
JSTL internationalization and formatting actions call ServletResponse.setLo-
cale(), which may affect the response character encoding. See the Servlet and
JSTL specifications for more information.

Note that the response character encoding can only be changed until the
response is committed. Datais sent to the response stream on buffer flushes for
buffered pages, or on encountering the first content (beware of whitespace) on
unbuffered pages. Whitespace is notorioudly tricky for JSP Pagesin JSP syntax,
but much more manageable for JSP Documentsin XML syntax.

JSP.4.3 Request Character Encoding

The request character encoding is the character encoding in which parameters
in an incoming request are interpreted. It is primarily managed as the ServletRe-
quest object’s characterEncoding property.

The JSP specification doesn’t provide functionality to handle the request
character encoding directly. To control the request character encoding from JSP
pages without embedded Java code, the JSTL <fmt:requestEncoding> can be used.

JSP.44 XML View Character Encoding

The XML view character encoding is the character encoding used for external-
izing the XML view of a JSP page or tag file.
The XML view character encoding is aways UTF-8.

JSP.4.5 Delivering L ocalized Content

The JSP specification does not mandate any specific approach for structuring
localized content, and different approaches are possible. Two common approaches
areto use atemplate taglib and pull localized strings from aresource repository, or
to use-per-locale JSP pages. Each approach has benefits and drawbacks. The JSTL
internationalization and formatting actions provide support for retrieving localized
content from resource bundles and thus support the first approach. Some users have
been using transformations on JSP documentsto do simple replacement of elements

JavaServer Pages 2.0 Specification

Delivering Localized Content 1-97

by locdlized strings, thus maintaining JSP syntax with no performance cost at run-
time. Combinations of these approaches also make sense.

JavaServer Pages 2.0 Specification

1-98 INTERNATIONALIZATION ISSUES

JavaServer Pages 2.0 Specification

cineren JOP.O

Standard Acti oné

T his chapter describes the standard actions of JavaServer Pages 2.0 (JSP 2.0).
Standard actions are represented using XML elements with a prefix of jsp (though
that prefix can be redefined inthe XML syntax). A trandation error will result if the
JSP prefix is used for an element that is not a standard action.

JSP.5.1 <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language
object defined within agiven scope and available with a given id with anewly
declared scripting variable of the sameid.

When a <jsp:useBean> action is used in an scriptless page, or in an scriptless
context (asin the body of an action so indicated), there are no Java scripting
variables created but instead an EL variable is created.

The jsp:useBean action is quite flexible; its exact semantics depends on the
attributes given. The basic semantic tries to find an existing object using id and
scope. If the object is not found it will attempt to create the object using the other
attributes.

It is aso possible to use this action to give alocal name to an object defined
elsewhere, as in another JSP page or in a servlet. This can be done by using the
type attribute and not providing class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide
both class and beanName. If type and class are present, class must be assignable
to type (in the Java platform sense). For it not to be assignable is a translation-
time error.

The attribute beanName specifies the name of a Bean, as specified in the
JavaBeans specification. It is used as an argument to the instantiate method in the
java.beans.Beans class. It must be of the form a.b.c, which may be either aclass,

JavaServer Pages 2.0 Specification

1-99

1-100

STANDARD ACTIONS

or the name of aresource of the form a/b/c.ser that will be resolved in the current
ClassLoader. If thisis not true, a request-time exception, asindicated in the
semantics of the instantiate method will be raised. The value of this attribute can
be a request-time attribute expression.

The id Attribute

Theid="name” attribute/valuetuplein ajsp:useBean action has special meaning
to a JSP container, at page trandation time and at client request processing time. In
particular:

* the name must be unique within the translation unit, and identifies the particu-
lar element in which it appears to the JSP container and page.

Duplicate id’s found in the same trangdlation unit shall result in afatal transla-
tion error.

» The JSP container will associate an object (a JavaBean component) with the
named value and accessed viathat name in various contexts through the page-
context object described later in this specification.

The name is also used to expose a variable (name) in the page's scripting lan-
guage environment. The scope of the scripting language variable is dependent
upon the scoping rules and capabilities of the scripting language used in the
page.

Note that thisimplies the name value syntax must comply with the variable
naming syntax rules of the scripting language used in the page. Chapter JSP.9
provides details for the case where the language attribute is java.

An example of the scope rules just mentioned is shown next:

JavaServer Pages 2.0 Specification

<jsp:useBean> 1-101

<% { // introduce a new block %>
<jsp:useBean id="customer” class="com.myco.Customer” />

<%

/*

* the tag above creates or obtains the Customer Bean

* reference, associates it with the name “customer” in the

* PageContext, and declares a Java programming language
* variable of the same name initialized to the object reference
*in this block’s scope.

*/

%>

<%= customer.getName(); %>
<% } /I close the block %>

<%

/l the variable customer is out of scope now but

/l the object is still valid (and accessible via pageContext)
%>

The scope Attribute

The scope="page|request|session|application” attribute/value tuple is associ-
ated with, and modifies the behavior of theid attribute described above (it has
both trandlation time and client request processing time semantics). In partic-
ular it describes the namespace, the implicit lifecycle of the object reference
associated with the name, and the API's used to access this association. For al
scopes, it isillegal to change the instance object so associated, such that its
new runtime type is a subset of the type(s) of the object previously so associ-
ated. See Section JSP.1.8.2 for details on the avail able scopes.

Semantics
The actions performed in ajsp:useBean action are:
1. An attempt to locate an object based on the attribute valuesid and scope. The

inspection is done synchronized per scope namespace to avoid non-determin-
istic behavior.

2. A scripting language variable of the specified type (if given) or class (if type

JavaServer Pages 2.0 Specification

1-102

STANDARD ACTIONS

is not given) is defined with the given id in the current lexical scope of the
scripting language. Thetype attribute should be used to specify aJavatypethat
cannot be instantiated as a JavaBean (i.e. a Java type that is an abstract class,
interface, or a class with no public no-args constructor). If the class attributeis
used for a Java type that cannot be instantiated as a JavaBean, the container
may consider the page invalid, and is recommended to (but not required to)
produce afatal tranglation error at tranglation time, or ajava.lang.Instantiation-
Exception at request time. Similarly, if either type or class specify atype that
can not be found, the container may consider the page invalid, and is recom-
mended to (but not required to) produce afatal translation error at translation
time, or ajava.lang.ClassNotFoundException at request time.

. If the object isfound, the variable’ s value isinitialized with areference to the

located object, cast to the specified type. If the cast fails, ajava.lang.ClassCas-
tException shall occur. This completes the processing of this jsp:useBean ac-
tion.

. If the jsp:useBean action had a non-empty body it is ignored. This completes

the processing of thisjsp:useBean action.

. If the object isnot found in the specified scope and neither class nor beanName

are given, a java.lang.InstantiationException shall occur. This completes the
processing of thisjsp:useBean action.

. If the object is not found in the specified scope, and the class specified names

anon-abstract class that defines a public no-args constructor, then the classis
instantiated. The new object reference is associated with the scripting variable
and with the specified namein the specified scope using the appropriate scope
dependent association mechanism (see PageContext). After this, step 8 is per-
formed.

If the object isnot found, and the class iseither abstract, an interface, or no pub-
lic no-args constructor is defined therein, then a java.lang.InstantiationExcep-
tion shall occur. This completes the processing of thisjsp:useBean action.

. If the object is not found in the specified scope; and beanName is given, then

the method instantiate of java.beans.Beans will beinvoked with the ClassLoad-
er of the servlet object and the beanName as arguments. If the method suc-
ceeds, the new object reference is associated the with the scripting variable and
with the specified name in the specified scope using the appropriate scope de-
pendent association mechanism (see PageContext). After this, step 8 is per-
formed.

. If the jsp:useBean action has a non-empty body, the body is processed. The

variable is initialized and available within the scope of the body. The text of
the body is treated as elsewhere. Any template text will be passed through to

JavaServer Pages 2.0 Specification

<jsp:useBean> 1-103

the out stream. Scriptlets and action tags will be evaluated.

A common use of anon-empty body isto complete initializing the created
instance. In that case the body will likely contain jsp:setProperty actions and
scriptlets that are evaluated. This completes the processing of this useBean
action.

Examples

In the following example, a Bean with name connection of type
com.myco.myapp.Connection is available after actions on this e ement, either
because it was already created and found, or because it is newly created.

<jsp:useBean id="connection” class="com.myco.myapp.Connection” />

In the next example, the timeout property is set to 33 if the Bean was instanti-
ated.

<jsp:useBean id="connection” class="com.myco.myapp.Connection”>
<jsp:setProperty name="connection” property="timeout” value="33">
</jsp:useBean>

In the final example, the object should have been present in the session. If so,
it is given the local name wombat with WombatType. A ClassCastException
may beraised if the object is of the wrong class, and an InstantiationException
may be raised if the object is not defined.

<jsp:useBean id="wombat” type="my.WombatType” scope="session"/>
Syntax

This action may or not have abody. If the action has no body, it is of the form:
<jsp:useBean id="name" scope="page|request|session|application” typeSpec />

typeSpec ::= class="className” |
class="className” type="typeName” |
type="typeName” class="className” |
beanName="beanName” type="typeName” |
type="typeName” beanName="beanName” |
type="typeName”

If the action has abody, it is of the form:

JavaServer Pages 2.0 Specification

1-104 STANDARD ACTIONS

<jsp:useBean id="name" scope="page|request|session|application" typeSpec >
body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is
created. Typically, the body will contain either scriptlets or jsp:setProperty tags
that will be used to modify the newly created object, but the contents of the body
are not restricted.

The <jsp:useBean> tag has the following attributes:

Table JSP.5-1 jsp:useBean Attributes

id The name used to identify the object instance in the
specified scope’s namespace, and also the scripting variable
name declared and initialized with that object reference.
The name specified is case sensitive and shall conform to
the current scripting language variable-naming conventions.

scope The scope within which the reference is available. The
default value is page. See the description of the scope
attribute defined earlier herein. A trandation error must
occur if scopeisnot one of “page”, “request”, “session” or

“application”.

class The fully qualified name of the class that defines the
implementation of the object. The class nameis case
sensitive.
If the class and beanName attributes are not specified the
object must be present in the given scope.

beanName The name of a bean, as expected by the instantiate method
of the java.beans.Beans class.
This attribute can accept areguest-time attribute expression
asavalue.

JavaServer Pages 2.0 Specification

<jsp:setProperty> 1-105

Table JSP.5-1 jsp:useBean Attributes

type If specified, it defines the type of the scripting variable
defined.
This alows the type of the scripting variable to be distinct
from, but related to, the type of the implementation class
specified.
Thetypeisrequired to be either the classitself, a superclass
of the class, or an interface implemented by the class
specified.
The aobject referenced is required to be of thistype,
otherwise ajava.lang.ClassCastException shall occur at
request time when the assignment of the object referenced
to the scripting variable is attempted.
If unspecified, the value isthe same as the value of the class
attribute.

JSP.5.2 <jsp:setProperty>

Thejsp:setProperty action setsthe values of propertiesin abean. The name
attribute that denotes the bean must be defined before this action appears.

There are two variants of the jsp:setProperty action. Both variants set the
values of one or more propertiesin the bean based on the type of the properties.
The usua bean introspection is done to discover what properties are present, and,
for each, its name, whether it is simple or indexed, itstype, and the setter and get-
ter methods. Introspection also indicates if a given property type has a PropertyEd-
itor class.

Propertiesin a Bean can be set from one or more parameters in the request
object, from a String constant, or from a computed request-time expression.
Simple and indexed properties can be set using jsp:setProperty.

When assigning from a parameter in the request object, the conversions
described in Section JSP.1.14.2.1 are applied, using the target property to
determine the target type.

When assigning from a value given as a String constant, the conversions
described in Section JSP.1.14.2.1 are applied, using the target property to
determine the target type.

When assigning from a value given as a request-time attribute, no type
conversions are applied if a scripting expression is used, asindicated in
Section JSP.1.14.2.2. If an EL expression is used, the type conversions described
in Section JSP.2.8 are performed.

JavaServer Pages 2.0 Specification

1-106 STANDARD ACTIONS

When assigning values to indexed properties the value must be an array; the
rules described in the previous paragraph apply to the actions.

A conversion failure leads to an error, whether at translation time or request-
time.

Examples

The following two actions set a value from the request parameter values.

<jsp:setProperty name="request” property="*"/>
<jsp:setProperty name="user” property="user” param="username” />

The following two elemenst set a property from a value

<jsp:setProperty name="results” property="col” value="${i mod 4}"/>
<jsp:setProperty name="results” property="row” value="<%= i/4 %>" />

Syntax

<jsp:setProperty name="beanName" prop_expr />

prop_expr ::=
property="*" |
property="propertyName”|
property="propertyName” param="parameterName"|
property="propertyName” value="propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as
described in Section JSP.1.14.1.

propertyValue ::= expr_scriptlet

1 See syntax for expression scriptlet <%= ... %>

JavaServer Pages 2.0 Specification

<jsp:getProperty> 1-107

The <jsp:setProperty> action has the following attributes:

Table JSP.5-2 jsp:setProperty Attributes

name The name of abean instance defined by a <jsp:useBean>
action or some other action. The bean instance must contain
the property to be set. The defining action must appear
before the <jsp:setProperty> action in the samefile.

property The name of the property whose value will be set. If proper-
tyName is set to * then the tag will iterate over the current
ServletRequest parameters, matching parameter names and
value type(s) to property names and setter method type(s),
setting each matched property to the value of the matching
parameter. If a parameter has avalue of ", the
corresponding property is not modified.

param The name of the request parameter whose value is given to
abean property. The name of the request parameter usually
comes from aweb form.
If param is omitted, the request parameter name is assumed
to be the same as the bean property name.
If the param is not set in the Request object, or if it has the
value of “, the jsp:setProperty action has no effect (a noop).
An action may not have both param and value attributes.

value The value to assign to the given property.
This attribute can accept arequest-time attribute expression
asavalue.

An action may not have both param and value attributes.

JSP.5.3 <jsp:getProperty>

The <jsp:getProperty> action places the value of a bean instance property, con-
verted to a String, into the implicit out object, from which the value can be displayed
as output. The bean instance must be defined as indicated in the name attribute
before this point in the page (usually viaajsp:useBean action).

The conversion to String is done as in the printin methods, i.e. the toString
method of the object is used for Object instances, and the primitive types are
converted directly.

If the object is not found, a request-time exception is raised.

JavaServer Pages 2.0 Specification

1-108

STANDARD ACTIONS

The value of the name attribute in jsp:setProperty and jsp:getProperty will
refer to an object that is obtained from the pageContext object through its findAt-
tribute method.

The object named by the name must have been “introduced” to the JSP
processor using either the jsp:useBean action or a custom action with an
associated Variablelnfo entry for this name. If the object was not introduced in this
manner, the container implementation is recommended (but not required) to raise
atrandation error, since the page implementation isin violation of the
specification.

Note— A consequence of the previous paragraph isthat objects that are stored
in, say, the session by afront component are not automatically visible to jsp:set-
Property and jsp:getProperty actionsin that page unless ajsp:useBean action, or
some other action, makes them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to
access the same object, it can use that information. For example it may use a
scripting variable, but it must guarantee that no intervening code has invalidated
the copy held by the scripting variable. The truth is always the value held by the
pageContext object.

Examples

<jsp:getProperty name="user” property="name” />

Syntax

<jsp:getProperty name="name"” property="propertyName” />

The attributes are:

Table JSP.5-3 jsp: getProperty Attributes

name The name of the abject instance from which the property is
obtained.
property Names the property to get.

JavaServer Pages 2.0 Specification

<jsp:include> 1-109

JSP.54 <jsp:include>

A <jsp:include .../> action provides for the inclusion of static and dynamic
resources in the same context as the current page. See Table JSP.1-10 for a sum-
mary of include facilities.

Inclusion isinto the current value of out. The resource is specified using arel-
ativeURLspec that isinterpreted in the context of the web application (i.e. itis
mapped).

The page attribute of both the jsp:include and the jsp:forward actions are
interpreted relative to the current JSP page, while the file attribute in an include
directive isinterpreted relative to the current JSP file. See below for some
examples of combinations of this.

An included page cannot change the response status code or set headers. This
precludesinvoking methods like setCookie. Attemptsto invoke these methods will
beignored. The constraint is equivalent to the one imposed on the include method
of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values
for some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once theinclusion is
completed.

Theflush attribute controls flushing. If true, then, if the page output is buffered
and the flush attribute is given a true value, then the buffer is flushed prior to the
inclusion, otherwise the buffer is not flushed. The default value for the flush
attribute is false.

Examples
<jsp:include page="/templates/copyright.html"/>

The above example is asimple inclusion of an object. The path is interpreted
in the context of the Web Application. It islikely a static object, but it could be
mapped into, for instance, a servlet viaweb.xml.

For an example of a more complex set of inclusions, consider the following
four situations built using four JSP files: A jsp, C.jsp, dir/B.jsp and dir/C.jsp:

JavaServer Pages 2.0 Specification

1-110

STANDARD ACTIONS

* Ajsp says<%@ include file="dir/B.jsp"%> and dir/B.jsp Says <% @ include
file="C.jsp"%>. In this case the relative specification C.jsp resolves to dir/C.jsp.

* A.jsp says<jsp:include page="dir/B.jsp”/> and dir/B.jsp Says <jsp:include
page="C.jsp” />. In this case the relative specification C.jsp resolvesto dir/
C.jsp.

* A.jsp says<jsp:include page="dir/B.jsp”/> and dir/B.jsp Says <%@ include
file="C.jsp” %>. In this case the rel ative specification C.jsp resolvesto dir/C.jsp.

o Ajsp says<%@ include file="dir/B.jsp"%> and dir/B.jsp says <jsp:include
page="C.jsp"/>. In this case the relative specification C.jsp resolvesto C.jsp.

Syntax

<jsp:include page="urlSpec” flush="true|false"/>
and

<jsp:include page="urlSpec” flush="true|false">
{<jsp:param /> }*
</jsp:include>

Thefirst syntax just does arequest-time inclusion. In the second case, the
valuesin the param subelements are used to augment the request for the purposes
of theinclusion.

The valid attributes are:

Table JSP.5-4 jsp:include Atrributes

page The URL isarelative urlSpec asin Section JSP1.2.1.
Relative paths are interpreted relative to the current JSP
page.
Accepts arequest-time attribute value (which must evaluate
to a String that is arelative URL specification).

flush Optional boolean attribute. If the value is true, the buffer is
flushed now. The default value is false.

JSP.5.5 <jsp:forward>

A <jsp:forward page="urlSpec” /> action alows the runtime dispatch of the cur-
rent request to a static resource, a JSP page or a Java servlet classin the same con-

JavaServer Pages 2.0 Specification

<jsp:forward> 1-111

text asthe current page. A jsp:forward effectively terminates the execution of the
current page. Therdative urlSpec isasin Section JSP1.2.1.

The request object will be adjusted according to the value of the page
attribute.

A jsp:forward action may have jsp:param subelements that can provide values
for some parameters in the request to be used for the forwarding.

If the page output is buffered, the buffer is cleared prior to forwarding.

If the page output is buffered and the buffer was flushed, an attempt to
forward the request will result in an lllegalStateException.

If the page output was unbuffered and anything has been written to it, an
attempt to forward the request will result in an lllegalStateException.

Examples

The following action might be used to forward to a static page based on some
dynamic condition.

<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page='<%= whereTo %>’ />

Syntax

<jsp:forward page="relativeURLspec” />

and

<jsp:forward page="urlSpec”>
{<jsp:param /> }*

</jsp:forward>

Thistag allows the page author to cause the current request processing to be
affected by the specified attributes as follows:

Table JSP.5-5 jsp:forward Attributes

page The URL isarelative urlSpec asin Section JSP1.2.1. Rela-
tive paths are interpreted relative to the current JSP page.
Accepts arequest-time attribute val ue (which must evaluate
to a String that is arelative URL specification).

JavaServer Pages 2.0 Specification

1-112 STANDARD ACTIONS

JSP.5.6 <jgp:param>

Thejsp:param element is used to provide key/value information. This element
isused in thejsp:include, jsp:forward, and jsp:params elements. A trandlation error
shall occur if the element is used el sewhere.

When doing jsp:include or jsp:forward, the included page or forwarded page
will see the original request object, with the original parameters augmented with
the new parameters, with new val ues taking precedence over existing values when
applicable. The scope of the new parametersis the jsp:include or jsp:forward call;
i.e. inthe case of an jsp:include the new parameters (and values) will not apply
after theinclude. Thisisthe same behavior asin the ServletRequest include and
forward methods (see Section 8.1.1 in the Servlet 2.4 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is
specified for forward, the forwarded request shall have A=bar,foo. Note that the
new param has precedence.

The parameter names and val ues specified should be left unencoded by the
page author. The JSP container must encode the parameter names and values
using the character encoding from the request object when necessary. For
example, if the container chooses to append the parameters to the URL in the
dispatched request, both the names and values must be encoded as per the content
type application/x-www-form-urlencoded in the HTML specification.

Syntax

<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value. name indicates the
name of the parameter, and value, which may be a request-time expression,
indicatesits value.

JSP.5.7 <jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains
the appropriate client browser dependent constructs (OBJECT or EMBED) that will
result in the download of the Java Plugin software (if required) and subsegquent exe-
cution of the Applet or JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the

JavaServer Pages 2.0 Specification

<jsp:plugin> 1-113

response. The attributes of the <jsp:plugin> tag provide configuration data for the
presentation of the element, as indicated in the table below.

The <jsp:params> action containing one or more <jsp:param> actions provides
parameters to the Applet or JavaBeans component.

The <jsp:fallback> element indicates the content to be used by the client
browser if the plugin cannot be started (either because OBJECT or EMBED is not
supported by the client browser or due to some other problem). If the plugin can
start but the Applet or JavaBeans component cannot be found or started, a plugin
specific message will be presented to the user, most likely a popup window
reporting a ClassNotFoundException.

The actual plugin code need not be bundled with the JSP container and a
reference to Sun’s plugin location can be used instead, although some vendors
will choose to include the plugin for the benefit of their customers.

Examples

<jsp:plugin type="applet” code="Molecule.class” codebase="/html|" >
<jsp:params>
<jsp:param
name="molecule”
value="molecules/benzene.mol’/>
</jsp:params>
<jsp:fallback>
<p> unable to start plugin </p>
</jsp:fallback>
</jsp:plugin>

JavaServer Pages 2.0 Specification

1-114 STANDARD ACTIONS

Syntax

<jsp:plugin type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment"
{ archive="archiveList"
{ height="height"
{ hspace="hspace"
{ jreversion="jreversion"
{ name="componentName"
{ vspace="vspace"
{ title="title”
{ width="width"
{ nspluginurl="url"
{ iepluginurl="url"
{ mayscript="true|false’

[P Y S W G S I I S S G B G S W)

{ <jsp:params>
{ <jsp:param name="paramName" value="paramValue" /> }+
</jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

Table JSP.5-6 jsp:plugin Attributes

type | dentifies the type of the component; a bean, or an Applet.
code As defined by HTML spec
codebase Asdefined by HTML spec
align Asdefined by HTML spec
archive Asdefined by HTML spec
height Asdefined by HTML spec.
Accepts arun-time expression value.
hspace Asdefined by HTML spec.
jreversion | dentifies the spec version number of the JRE the
component requiresin order to operate; the default is: 1.2
name As defined by HTML spec

JavaServer Pages 2.0 Specification

<jsp:params> 1-115

Table JSP.5-6 jsp:plugin Attributes

vspace Asdefined by HTML spec
title As defined by the HTML spec
width Asdefined by HTML spec.

Accepts a run-time expression value.

nspluginurl URL where JRE plugin can be downloaded for Netscape
Navigator, default isimplementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default
isimplementation defined.

mayscript Asdefined by HTML spec.

JSP.5.8 <jsp:params>

Thejsp:params action is part of the jsp:plugin action and can only occur asa
direct child of a<jsp:plugin> action. Using the jsp:params element in any other con-
text shall result in atrandation-time error.

The semantics and syntax of jsp:params are described in Section JSP5.7.

JSP.5.9 <jsp:fallback>

Thejsp:fallback action is part of the jsp:plugin action and can only occur asa
direct child of a<jsp:plugin> element. Using the jsp:fallback element in any other
context shall result in atrandation-time error.

The semantics and syntax of jsp:fallback are described in Section JSP5.7.

JSP.5.10 <jgp:attribute>

The <jsp:attribute> standard action has two uses. It allows the page author to
define the value of an action attribute in the body of an XML element instead of in
the value of an XML attribute. It also allows the page author to specify the
attributes of the element being output, when used inside a <jsp:element> action.
The action must only appear as a subelement of a standard or custom action. An
attempt to use it otherwise must result in atranslation error. For example, it cannot
be used to specify the value of an attribute for XML elements that are template

JavaServer Pages 2.0 Specification

1-116

STANDARD ACTIONS

text. For custom action invocations, JSP containers must support the use of
<jsp:attribute> for both Classic and Simple Tag Handlers.

The behavior of the <jsp:attribute> standard action varies depending on the

type of attribute being specified, asfollows:

A trandlation error must occur if <jsp:attribute> is used to define the value of
an attribute of <jsp:attribute>.

If the enclosing action is <jsp:element>, the value of the name attribute and
the body of the action will be used as attribute name/value pairsin the dynam-
icaly constructed element. See Section JSP.5.14 for more details on <jsp:ele-
ment>. Note that in this context, the attribute does not apply to the
<jsp:element> action itself, but rather to the output of the element. That is,
<jsp:attribute> cannot be used to specify the name attribute of the <jsp:ele-
ment> action.

For custom action attributes of type javax.servlet.jsp.tagext.JspFragment, the
container must create a JspFragment out of the body of the <jsp:attribute> ac-
tion and pass it to the tag handler. This applies for both Classic Tag Handlers
and Simple Tag Handlers. A trandation error must result if the body of the
<jsp:attribute> action is not scriptlessin this case.

If the custom action accepts dynamic attributes (Section JSP.7.1.8), and the
name of the attribute is not one explicitly indicated for the tag, then the con-
tainer will evaluate the body of <jsp:attribute> and assign the computed value
to the attribute using the dynamic attribute machinery. Since the type of the at-
tribute is unknown and the body of <jsp:attribute> evaluates to a String, the
container must pass in an instance of String.

For standard or custom action attributes that accept a request-time expression
value, the Container must evaluate the body of the <jsp:attribute> action and
use the result of this evaluation as the value of the attribute. The body of the
attribute action can be any JSP content in this case. If the type of the attribute
is not String, the standard type conversion rules are applied, as per

Section JSP1.14.2.1, “Conversions from String values’.

For standard or custom action attributes that do not accept a request-time ex-
pression value, the Container must use the body of the <jsp:attribute> action as
the value of the attribute. A translation error must result if the body of the
<jsp:attribute> action contains anything but template text.

JavaServer Pages 2.0 Specification

<jsp:attribute> 1-117

If the body of the <jsp:attribute> action is empty, it is the equivalent of
specifying “” as the value of the attribute. Note that after being trimmed, non-
empty bodies can result in avalue of ““ aswell.

The <jsp:attribute> action accepts aname attribute and a trim attribute. The
name attribute associates the action with one of the attributes the tag handler is
declared to accept, or in the case of <jsp:element> it associates the action with one
of the attributes in the element being output. The optional trim attribute determines
whether the whitespace appearning at the beginning and at the end of the element
body should be discarded or not. By default, the leading and trailing whitespace is
discarded. The Container must trim at tranglation time only. The Container must
not trim at runtime. For example, if abody contains a custom action that produces
leading or trailing whitespace, that whitespace is preserved regardless of the value
of the trim attribute.

The following is an example of using the <jsp:attribute> standard action to
define an attribute that is evaluated by the container prior to the custom action
invocation. This example assumes the name attribute is declared with type
java.lang.String inthe TLD.

<mytag:highlight>
<jsp:attribute name="text">
Inline definition.
</jsp:attribute>
</mytag:highlight>

Thefollowing isan example of using the <jsp:attribute> standard action within
<jsp:element>, to define which attributes are to be output with that element:

<jsp:element name="firsthame”>
<jsp:attribute name="name">Susan</jsp:attribute>
</jsp:element>
Thiswould produce the following output:

<firstname name="Susan"/>

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:attribute> standard action.

JavaServer Pages 2.0 Specification

1-118 STANDARD ACTIONS

The attributes are:

Table JSP.5-7 Attributes for the <jsp:attribute> standard action

name (required) If not being used with <jsp:element>, then if the
action does not accept dynamic attributes, the name must
match the name of an attribute for the action being invoked,
as declared in the Tag Library Descriptor for a custom
action, or as specified for a standard action, or atrandation
error will result. Except for when used with <jsp:element>,
atrandation error will result if both an XML element
attribute and a <jsp:attribute> element are used to specify
the value for the same attribute.
The value of name can be a QName. If so, atrandation
error must occur if the prefix does not match that of the
action it applies to, unless the action supports dynamic
attributes, or unless the action is <jsp:element>.
When used with <jsp:element>, this attribute specifies the
name of the attribute to be included in the generated
element.

trim (optional) Valid values are true and false. If true, the
whitespace, including spaces, carriage returns, line feeds,
and tabs, that appears at the beginning and at the end of the
body of the <jsp:attribute> action will beignored by the JSP
compiler. If false the whitespace is not ignored. Defaultsto
true.

JSP5.11 <jsp:body>

Normally, the body of a standard or custom action invocation is defined implic-
itly asthe body of the XML element used to represent the invocation. The body of a
standard or custom action can aso be defined explicitly using the <jsp:body> stan-
dard action. Thisis required if one or more <jsp:attribute> elements appear in the
body of the tag.

If one or more <jsp:attribute> elements appear in the body of atag invocation
but no <jsp:body> element appears or an empty <jsp:body> element appears, it is
the equivalent of the tag having an empty body.

Itisalso legal to usethe <jsp:body> standard action to supply bodies to
standard actions, for any standard action that accepts a body (except for

JavaServer Pages 2.0 Specification

<jsp:invoke> 1-119

<jsp:body>, <jsp:attribute>, <jsp:scriptlet>, <jsp:expression>, and <jsp:declara-
tion>).
The body standard action accepts no attributes.

JSP.5.12 <jsp:invoke>

The <jsp:invoke> standard action can only be used in tag files (see
Chapter JSP.8, “Tag Files’), and must result in atrandation error if used in a JSP.
It takes the name of an attribute that is a fragment, and invokes the fragment,
sending the output of the result to the JspWriter, or to a scoped attribute that can be
examined and manipulated. If the fragment identified by the given name is null,
<jsp:invoke> will behave as though a fragment was passed in that produces no
output.

JSP.5.12.1 Basic Usage

The most basic usage of this standard action will invoke a fragment with the
given name with no parameters. The fragment will be invoked using the JspFrag-
ment.invoke method, passing in null for the Writer parameter so that the results
will be sent to the JspWriter of the JspContext associated with the JspFragment.
The following is an example of such a basic fragment invocation:

<jsp:invoke fragment="fragl"/>

JSP.5.12.2 Storing Fragment Output

It is aso possible to invoke the fragment and send the results to a scoped
attribute for further examination and manipulation. This can be accomplished by
specifying the var or varReader attribute in the action. In this usage, the fragment
isinvoked using the JspFragment.invoke method, but a custom java.io.Writer is
passed in instead of null.

If var is specified, the container must ensure that ajava.lang.String object is
made available in a scoped attribute with the name specified by var. The String
must contain the content sent by the fragment to the Writer provided in the Jsp-
Fragment.invoke call.

If varReader is specified, the container must ensure that ajava.io.Reader
object is constructed and is made available in a scoped attribute with the name
specified by varReader. The Reader object can then be passed to a custom action
for further processing. The Reader object must produce the content sent by the

JavaServer Pages 2.0 Specification

1-120

STANDARD ACTIONS

fragment to the provided Writer. The Reader must also be resettable. That is, if its
reset method is called, the result of the invoked fragment must be able to be read
again without re-executing the fragment.

An optional scope attribute indicates the scope of the resulting scoped
variable.

Thefollowing is an example of using var or varReader and the scope attribute:

<jsp:invoke fragment="frag2” var="resultString” scope="session"/>

<jsp:invoke fragment="frag3” varReader="resultReader” scope="page”/>

JSP.5.12.3 Providing a Fragment Accessto Variables

JSP fragments have access to the same page scope variabl es as the page or tag
filein which they were defined (in addition to variablesin the request, session, and
application scopes). Tag files have access to alocal page scope, separate from the
page scope of the calling page. When atag file invokes a fragment that appearsin
the calling page, the JSP container provides away to synchronize variables
between the local page scopein the tag file and the page scope of the calling page.
For each variable that is to be synchronized, the tag file author must declare the
variable with a scope of either AT_BEGIN or NESTED. The container must then
generate code to synchronize the page scope values for the variable in the tag file
with the page scope equivalent in the calling page or tag file. The details of how
variables are synchronized can be found in Section JSP.8.9.

Thefollowing is an example of atag file providing afragment accessto a
variable:

<%@ variable name-given="x" scope="NESTED"” %>

<c:set var="x" value="1"/>
<jsp:invoke fragment="frag4"/>

A trandlation error shall result if the <jsp:invoke> action contains a non-empty
body.

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:invoke> standard action.

JavaServer Pages 2.0 Specification

<jsp:doBody> 1-121

The attributes are:

Table JSP.5-8 Attributes for the <jsp:invoke> standard action

fragment (required) The name used to identify this fragment during
this tag invocation.

var (optional) The name of a scoped attribute to store the result
of the fragment invocation in, asajava.lang.String object. A
trandlation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the fragment goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the fragment invocation in, as ajava.io.Reader object. A
tranglation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the result
of the fragment invocation goes directly to the JspWriter, as
described above.

scope (optional) The scope in which to store the resulting
variable. A trandation error must result if the value is not
one of page, request, session, or application. A translation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in asession. A container
must throw an lllegalStateException at runtimeif scope is
session and the calling page does not participatein a
session. Defaults to page.

JSP.5.13 <jsp:doBody>

The <jsp:doBody> standard action can only be used in tag files (see
Chapter JSP.8, “ Tag Files’), and must result in atranslation error if used in a JSP,
It invokes the body of the tag, sending the output of the result to the Jspwriter, or
to a scoped attribute that can be examined and manipul ated.

The <jsp:doBody> standard action behaves exactly like <jsp:invoke>, except
that it operates on the body of the tag instead of on a specific fragment passed as
an attribute. Because it always operates on the body of the tag, thereis no name
attribute for this standard action. The var, varReader, and scope attributes are all

JavaServer Pages 2.0 Specification

1-122

STANDARD ACTIONS

supported with the same semantics as for <jsp:invoke>. Fragments are provided
access to variables the same way for <jsp:doBody> asthey are for <jsp:invoke>. If
no body was passed to the tag, <jsp:doBody> will behave as though a body was
passed in that produces no output.

The body of atag is passed to the simple tag handler as a JspFragment object.

A trandation error shall result if the <jsp:doBody> action contains a non-
empty body.

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:doBody> standard action.

The attributes are:

Table JSP.5-9 Attributes for the <jsp:doBody> standard action

var (optional) The name of a scoped attribute to store the result
of the body invocation in, as ajava.lang.String object. A
tranglation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the body goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the body invocation in, as ajava.io.Reader object. A
trandation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the result
of the body invocation goes directly to the Jspwriter, as
described above.

scope (optional) The scope in which to store the resulting
variable. A tranglation error must result if the valueis not
one of page, request, session, or application. A trandation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in a session. A container
must throw an lllegalStateException at runtime if scope is
session and the calling page does not participatein a
session. Defaults to page.

JSP.5.14 <jsp:element>

Thejsp:element action is used to dynamically define the value of the tag of an
XML element. This action can be used in JSP pages, tag files and JSP documents.

JavaServer Pages 2.0 Specification

<jsp:element> 1-123

This action has an optional body; the body can use the jsp:attribute and jsp:body
actions.

A jsp:element action has one mandatory attribute, name, of type String. The
value of the attribute is used as that of the tag of the element generated.

Examples

The following example generates an XML element whose name depends on
the result of an EL expression, content.headerName. The element has an
attribute, lang, and the value of the attribute is that of the expression con-
tent.lang. The body of the element is the value of the expression content.body.

<jsp:element
name="${content.headerName}”
xmlins:jsp="http://java.sun.com/JSP/Page”>
<jsp:attribute name="lang">%${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

The next example fragment shows that jsp:element needs no children. The
example generates an empty element with name that of the value of the
expression myName.

<jsp:element name="${myName}"/>
Syntax

The jsp:element action may have a body. Two forms are valid, depending on
whether the element is to have attributes or not. In the first form, no attributes are
present:

<jsp:element name="name">
optional body
</jsp:element>

In the second form, zero or more attributes are requested, using jsp:attribute
and jsp:body, as appropriate.

<jsp:element name="name">
jsp:attribute*
jsp:body?
</jsp:element>

JavaServer Pages 2.0 Specification

1-124

STANDARD ACTIONS

The one valid, mandatory, attribute of jsp:element isits name. Unlike other
standard actions, the value of the name attribute must be given asan XML-style
attribute and cannot be specified using <jsp:attribute> This is because
<jsp:attribute> has a special meaning when used in the body of <jsp:element>. See
Section JSP5.10 for more details..

Table JSP.5-10 Attributes for the <jsp:element> standard action

name (required) The value of name isthat of the element
genreated. The name can be a QName; JSP 2.0 places no
constraints on thisvalue: it is accepted asis. A request-time
attribute value may be used for this attribute.

JSP.5.15 <jop:text>

A jsp:text action can be used to enclose template datain a JSP page, a JSP doc-
ument, or atag file. A jsp:text action has no attributes and can appear anywhere that
template data can. Its syntax is:

<jsp:text> template data </jsp:text>

The interpretation of ajsp:text element isto passits content through to the
current value of out. Thisisvery similar to the XSLT xsl:text €lement.

Examples

Thefollowing exampleisafragment that could be in both a JSP page or a JSP
document.

<jsp:text>
This is some content

</jsp:text>

Expressions may appear within jsp:text, asin the next example, where the
expression foo.content is evaluated and the result is inserted.

<jsp:text>
This is some content: ${foo.content}
</jsp:text>

No subelements may appear within jsp:text; for example the following frag-

JavaServer Pages 2.0 Specification

<jsp:output> 1-125

ment isinvalid and must generate atranglation error.

<jsp:text>
This is some content: <jsp:text>foo</jsp:text>
</jsp:text>

When within a JSP document, of course, the body content needs to
additionally conform to the constraints of being awell-formed XML document, so
the following example, athough valid in a JSP page isinvalid in a JSP document:

<jsp:text>
This is some content: ${foo.content > 3}
</jsp:text>

The same exampl e can be made legal, with no semantic changes, by using gt
instead of > in the expression; i.e. ${foo.content gt 3}.

In an JSP document, CDATA sections can also be used to quote,
uninterpreted, content, asin the following example:

<jsp:text>
<![CDATA[<mumble></foobar>]]>
</isp:text>

Syntax

Thejsp:text action has no attributes. The action may have a body. The body
may not have nested actions nor scripting elements. The body may have EL
expressions. The syntax is of the form:

<jsp:text>
optional body
</jsp:text>

JSP.5.16 <jsp:output>

Thejsp:output action can only be used in JSP documents and in tag filesin
XML syntax, and atrandation error must result if used in a standard syntax JSP or
tag file. Thisaction is used to modify some properties of the output of a JSP docu-
ment or atag file. In JSP 2.0 there are four properties that can be specified, all of
which affect the output of the XML prolog.

JavaServer Pages 2.0 Specification

1-126

STANDARD ACTIONS

The omit-xml-declaration property allows the page author to adjust whether an
XML declaration isto be inserted at the beginning of the output. Since XML
declarations only make sense for when the generated content is XML, the default
value of this property is defined so that it is unnecessary in most cases.

The omit-xml-declaration property is of type String and the valid values are
“yes’, “no”, “true” and “false”. The name, values and semantics mimic that of the
xsl:output element in the XSLT specification: if avalue of “yes’ or “true” isgiven,
the container will not add an XML declaration; if avalue of “no” or “false” is
given, the container will add an XML declaration.

The default value for a JSP document that has ajsp:root element is“yes’. The
default value for JSP documents without ajsp:root element is“no”.

The default value for atag filein XML syntax isaways “yes’. If the valueis
“false” or “no” the tag file will emit an XML declaration asitsfirst content.

The generated XML declaration is of the form:

<?xml version="1.0" encoding="encodingValue” ?>

Where encodingValue is the response character encoding, as determined in
Section JSP4.2 .

The doctype-root-element, doctype-system and doctype-public properties allow
the page author to specify that a DOCTY PE be automatically generated in the
XML prolog of the output. Without these properties, the DOCTY PE would need
to be output manually viaa <jsp:text> element before the root element of the JSP
document, which is inconvenient.

A DOCTY PE must be automatically output if and only if the doctype-system
element appearsin the trandation unit as part of a <jsp:output> action. The doc-
type-root-element must appear and must only appear if the doctype-system
property appears, or atranslation error must occur. The doctype-public property is
optional, but must not appear unless the doctype-system property appears, or a
tranglation error must occur.

The DOCTY PE to be automatically output, if any, is statically determined at
tranglation time. Multiple occurrences of the doctype-root-element, doctype-sys-
tem or doctype-public properties will cause atranslation error if the values for the
properties differ from the previous occurrence.

The DOCTY PE that is automatically output, if any, must appear immediately
before the first element of the output document. The name following
<IDOCTY PE must be the value of the doctype-root-element property. If adoctype-
public property appears, then the format of the generated DOCTY PE is:

JavaServer Pages 2.0 Specification

<jsp:output>

<IDOCTYPE nameOfRootElement PUBLIC “doctypePublic” “doctypeSystem”>

If adoctype-public property does not appear, then the format of the generated
DOCTYPE is:

<IDOCTYPE nameOfRootElement SYSTEM “doctypeSystem”>

Where nameOfRootElement is the value of the doctype-root-element property,
doctypePublic isthe value of the doctype-public attribute, and doctypeSystem isthe
value of the doctype-system property.

The values for doctypePublic and doctypeSystem must be enclosed in either
single or double quotes, depending on the value provided by the page author. It is
the responsibility of the page author to provide a syntactically-valid URI as per
the XML specification (see http://iwww.w3.0rg/TR/REC-xml#dt-sysid).

Examples

The following JSP document (with an extension of .jspx or with <is-xml> set
to true in the JSP configuration):

<?xml version="1.0" encoding="EUC-JP” ?>
<hello></hello>

generates an XML document as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<hello></hello>

The following JSP document is like the previous one, except that the XML
declaration is omited. A typical use would be where the XML fragment isto
be included within another document.

<?xml version="1.0" encoding="EUC-JP” ?>
<hello>
<jsp:output
xmins:jsp="http://java.sun.com/JSP/Page”
omit-xml-declaration="true"/>
</hello>

The following JSP document is equivalent but uses jsp:root instead of jsp:out-
put.

JavaServer Pages 2.0 Specification

1-127

1-128

STANDARD ACTIONS

<?xml version="1.0" encoding="EUC-JP” ?>

<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page” version="2.0">
<hello></hello>

</jsp:root>

The following JSP document specifies both a doctype-public and adoctype-

system:

<?xml version="1.0" encoding="UTF-8" ?>
<html xmIns:jsp="http://java.sun.com/JSP/Page™>

<jsp:output doctype-root-element="htm|”
doctype-public="-//W3C//DTD XHTML Basic 1.0//EN”"
doctype-system="http://www.w3.0rg/TR/xhtml-basic/xhtml-basic10.dtd” />

<body>

<hl>Example XHTML Document</h1>

</body>

</html>

and generates and XML document as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE html| PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN"
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<htmI><body><h1>Example XHTML Document</h1></body></html>

The following JSP document omits the doctype-public and explicitly omitsthe

XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>
<elementA>
<jsp:output omit-xml-declaration="true”
doctype-root-element="elementA”
doctype-system="test.dtd” />
Element body goes here.
</elementA>

and generates an XML document as follows:

<IDOCTYPE elementA SYSTEM “test.dtd">
<elementA>Element body goes here.</elementA>

JavaServer Pages 2.0 Specification

Other Standard Actions 1-129

Syntax

Thejsp:output action cannot have a body. The <jsp:output> action has the
following syntax:

<jsp:output (omit-xml-declaration="yes|no|true|false”) { doctypeDecl } />

doctypeDecl ::= (doctype-root-element="rootElement”
doctype-public="PubidLiteral”
doctype-system="SystemlLiteral”)
| (doctype-root-element="rootElement”
doctype-system="SystemLiteral”)

The following are the valid attributes of jsp:outpult:

Table JSP.5-11 Attribute for the <jsp:output> standard action

omit-xml-declaration (optional) Indicates whether to omit the generation of an
XML declaration. Acceptable values are “true”, “yes’,
“false” and “no”.

doctype-root-element (optional) Must be specified if and only if doctype-system
is specified or atranglation error must occur. Indicatesthe
name that is to be output in the generated DOCTY PE
declaration.

doctype-system (optional) Specifiesthat aDOCTY PE declarationisto be
generated and gives the value for the System Literal.

doctype-public (optional) Must not be specified unless doctype-system is
specified. Gives the value for the Public ID for the
generated DOCTY PE.

JSP.5.17 Other Standard Actions
Chapter JSP.6 defines severa other standard actionsthat are either convenient or
needed to describe JSP pages with an XML document, some of which are available

inal JSP pages. They are:

* <jsp:root>, defined in Section JSP.6.3.2.
* <jsp:declaration>, defined in Section JSP.6.3.7.

JavaServer Pages 2.0 Specification

1-130 STANDARD ACTIONS

* <jsp:scriptlet>, defined in Section JSP.6.3.7.
* <jsp:expression>, defined in Section JSP.6.3.7.

JavaServer Pages 2.0 Specification

cuneren JOP.O

JSP Documenté

T his chapter introduces two concepts related to XML and JSP: JSP docu-
ments and XML views. This chapter provides a brief overview of the two concepts
and their relationship and also providesthe details of JSP documents. The details of
the XML view of a JSP document are described in Chapter JSP.10.

JSP.6.1 Overview of JSP Documents and of XML Views

A JSP document is a JSP page written using XML syntax. JSP documents
need to be described as such, either implicitly or explicitly, to the JSP container,
which will then process them as XML documents, checking for well-formedness
and applying requests like entity declarations, if present. JSP documents are used
to generate dynamic content using the standard JSP semantics.

Here is asimple JSP document:

<table>
<c:forEach
xmins:c="http://java.sun.com/jsp/jstl/core"

<row>${counter}</row>
</c:forEach>
</table>

Thiswell-formed, namespace-aware XML document generates, using the JSP
standard tag library, an XML document that has <table> as the root element. That
element has 3 <row> subelements containing values 1, 2 and 3. See
Section JSP6.4 for more details of this and other examples.

JavaServer Pages 2.0 Specification 1-131

1-132

JSP DOCUMENTS

The design of JSP documentsis focused on the generation of dynamic XML
content, in any of its many uses, but JSP documents can be used to generate any
dynamic content.

Some of the syntactic elements described in Chapter 1 are not legal XML ; this
chapter describes aternative syntaxes for those elements that are aligned with the
XML syntax. The alternative syntaxes can be used in JSP documents; most of
them (jsp:output and jsp:root are exceptions) can also be used in JSP pagesin JSP
syntax. Asit will be described later, the alternative syntax isalso used in the XML
view of JSP pages.

JSP documents can be used in a number of ways, including:

* JSP documents can be passed directly to the JSP container; thisis becoming
more important as more and more content is authored as XML, beitin an
XML-based languages like XHTML or SV G, or for the exchange of docu-
ments in applications like Web Services. The generated content may be sent
directly to aclient, or it may be part of some XML processing pipeline.

* JSP documents can be manipulated by XML-aware tools.

» A JSP document can be generated from atextual representation by applying
an XML transformation, like XSLT.

» A JSP document can be generated automatically, say by serializing some ob-
jects

Tag files can also be authored using XML syntax. Therulesare very similar to
that of JSP documents; see Section JSP.8.6 for more details.

The XML view of a JSP pageisan XML document that is derived from the
JSP page following a mapping defined later in this chapter.. The XML view of a
JSP page is intended to be used for validating the JSP page against some
description of the set of valid pages. Validation of the JSP page is supported in the
JSP 2.0 specification through a TagLibraryValidator class associated with atag
library. The validator class acts on a PageData object that represents the XML
view of the JSP page (see, for example, Section JSP.7.4.1.2)

Figure JSP.6-1 below depicts the relationship between the concepts of JSP
pages, JSP documents and XML views. Two phases are involved: the Trandlation
phase, where JSP pages, in either syntax, are exposed to Tag Library Validators,
viatheir XML view, and the Request Processing phase, where requests are
processed to produce responses.

JavaServer Pages 2.0 Specification

JSP Documents 1-133

JSP Pages
TRANSLATION PHASE
JSP TLV; - ERRORS OR OK
Syntax TLV, - ERRORS OR OK
XML
View
XML SaL
Syntax Request
JSP 4
Implementation Response
Class !

REQUEST PROCESSING
PHASE

Figure JSP.6-1 Relationship between JSP Pages and XML views of JSP pages.

JSP documents are used by JSP page authors. They can be authored directly,
using atext editor, through an XML editing tool, or through a JSP page authoring
tool that is aware of the XML syntax. Any JSP page author that is generating
XML content should consider the use of JSP documents. In contrast, the XML
view of aJSP pageisaconcept internal to the JSP container and is of interest only
to Tag Library Authors and to implementors of JSP containers.

JSP.6.2 JSP Documents

A JSP document is a JSP page that is a namespace-aware XML document and
that isidentified as a JSP document to the JSP container.

JSP.6.2.1 I dentifying JSP Documents

A JSP document can be identified as such in three ways:

JavaServer Pages 2.0 Specification

1-134 JSP DOCUMENTS

* If thereisa<jsp-property-group> that explicitly indicates, through the <is-xml>
element, whether agiven fileisaJSP document, then that indication overrides
any other determination. Otherwise,

* If thisweb application isusing aversion 2.4 web.xml, and if the extension is
Jspx, then thefile is a JSP document. Otherwise,

* If thefileisexplicitly orimplicitly identified asa JSP page and the top el ement
isajsp:root element then thefileisidentified asaJSP document. Thisbehavior
provides backwards compatibility with JSP 1.2.

It isatranglation-time error for afile that isidentified as a JSP document to
not be awell-formed, namespace-aware, XML document.
See Section JSP.8.6 for details on identifying tag filesin XML syntax.

JSP.6.2.2 Overview of Syntax of JSP Documents

A JSP document may or not have a <jsp:root> asits top element; <jsp:root>
was mandatory in JSP 1.2, but we expect most JSP documentsin JSP 2.0 not to
useit.

JSP documents identify standard actions through the use of awell-defined
URI in its namespace; although in this chapter the prefix jsp is used for the
standard actions, any prefix isvalid aslong as the correct URI identifying JSP 2.0
standard actions is used. Custom actions are identified using the URI that
identifiestheir tag library; taglib directives are not required and cannot appear in a
JSP document.

A JSP document can use XML elements as template data; these elements may
have qualified names (and thus be in a namespace), or be unqualified.

The <jsp:text> element can be used to define some templ ate data verbatim.

Since a JSP document must be avalid XML document, there are some JSP
elements that can’t be used in a JSP document. The elements that can be used are:

 JSP directives and scripting elementsin XML syntax.
» EL expressionsin the body of elements and in attribute val ues.
All JSP standard actions described in Chapter JSP.1.

» Thejsp:root, jsp:text, and jsp:output elements.

» Custom action elements

Template data described using jsp:text elements.

» Template data described through XML fragments.

JavaServer Pages 2.0 Specification

JSP Documents

Scriptlet expressions used to specify request-time attribute values use a
dlightly different syntax in JSP documents than in non JSP documents; rather than
using <%= expr %>, they use %= expr %. The white space around expr is not
needed, and note the missing < and >. The expr, after any applicable quoting asin
any other XML document, is an expression to be evaluated asin
Section JSP1.14.1.

The mechanisms that enable scripting and EL evaluation in a JSP page apply
aso when the page is a JSP document. Just asin the standard syntax, the $ in an
EL expression can be quoted using \$ in both attribute values and template text.
Recall, however, that \\ is not an escape sequence in XML attributes so whereas
within an attribute in standard syntax \${1+1} would result in\2 (assuming EL is
enabled) or \${1+1} (assuming EL isignored), in XML syntax \${1+1} always
resultsin\${1+1}.

It should be noted that the equivalent JSP document form of
<a href="<%= url %>">, where'a isnot a custom action, is;

<jsp:text><![CDATA[</jsp:text><jsp:expression>url</jsp:expres-
sion><jsp:text><!/[CDATA[">]]></jsp:text>

In the JSP document element , "%= url %" does not
represent a request-time attribute value. That syntax only applies for custom
action elements. Thisisin contrast to , where "${url}" represents
an EL expression in both JSP pages and JSP documents.

JSP.6.2.3 Semantic M odel

The semantic model of a JSP document is unchanged from that of a JSP page
in JSP syntax: JSP pages generate a response stream of characters from template
data and dynamic elements. Template data can be described explicitly through a
jsp:text element, or implicitly through an XML fragment. Dynamic elements are
EL expressions, scripting elements, standard actions or custom actions. Scripting
elements are represented as XML elements with the exception of request-time
attribute expressions, which are represented through special attribute syntax.

Thefirst step in processing a JSP document isto processit asan XML
document, checking for well-formedness, processing entity resolution and, if
applicable, performing validation as described in Section JSP.6.2.4. As part of the
processing XML quoting will be performed, and JSP quoting will not be
performed later.

After these steps, the JSP document will be passed to the JSP container which
will then interpret it as a JSP page.

JavaServer Pages 2.0 Specification

1-135

1-136

JSP DOCUMENTS

The JSP processing step for a JSP document is as for any other JSP page
except that namespaces are used to identify standard actions and custom action
tag libraries and that run time expressions in attributes use the dightly different
syntax. Note that al the JSP elementsthat are described in this chapter arevalidin
all JSP pages, be they identified as JSP documents or not. Thisis a backward
compatible change from the behavior in JSP 1.2 to enable gradual introduction of
XML syntax in existing JSP pages.

To clearly explain the processing of whitespace, we follow the structure of the
XSLT specification. Thefirst step in processing a JSP document is to identify the
nodes of the document. Then, all textual nodes that have only white space are
dropped from the document; the only exception are nodes in ajsp:text element,
which are kept verbatim. The resulting nodes are interpreted as described in the
following sections. Template datais either passed directly to the responseor it is
mediated through (standard or custom) actions.

Following the XML specification (and the XSLT specification), whitespace
characters are #x20, #x9, #xD, Of #xA.

The container will add, in some conditions, an XML declaration to the output;
the rules for this depend on the use of jsp:root and jsp:output; see
Section JSP6.3.3.

JSP.6.2.4 JSP Document Validation

A JSP Document with a DOCTY PE declaration must be validated by the con-
tainer in the trandation phase. Validation errors must be handled the same way as
any other trandation phase errors, as described in Section JSP1.4.1.

JSP 2.0 requires only DTD validation for JSP Documents; containers should
not perform validation based on other types of schemas, such as XML schema.

JSP.6.3 Syntactic Elementsin JSP Documents

This section describes the e ements in a JSP document.

JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries

JSP documents and tag filesin XML syntax use XML namespaces to identify
the standard actions, the directives, and the custom actions. JSP pages and tagsin
the JSP syntax cannot use XML namespaces and instead must use the taglib direc-
tive.

JavaServer Pages 2.0 Specification

Syntactic Elements in JSP Documents 1-137

Though the prefix "jsp" is used throughout this specification, it is the
namespace http://java.sun.com/JSP/Page and not the prefix "jsp" that identifiesthe
JSP standard actions.

An xmins attribute for a custom tag library of the form xml:prefix="uri’
identifiesthe tag library through the uri value. The uri value may be of one of three
forms, either a URN of the form urn:jsptagdir:tagdir, a URN of the form
urn:jsptld:path, or aplain URI.

If the uri valueisa URN of the form urn:jsptld:path, thenthe TLD is
determined following the mechanism described in Section JSP.7.3.2.

If the uri valueisa URN of the form urn:jsptagdir:tagdir, thenthe TLD is
determined following the mechanism described in Section JSP.8.4.

If the uri valueis aplain URI, then a path is determined by consulting the
mapping indicated in web.xml extended using the implicit mapsin the packaged
tag libraries (Sections JSP.7.3.3 and JSP.7.3.4), asindicated in Section JSP.7.3.6.
In contrast to Section JSP.7.3.6.2, however, atranslation error must not be
generated if the given uri isnot found in the taglib map. Instead, any actionsin the
namespace defined by the uri value must be treated as uninterpreted.

JSP.6.3.2 Thejsp:root Element

Thejsp:root element can only appear as the root element in a JSP document or
inatag filein XMLsyntax; otherwise atrandation error shall occur. JSP documents
and tag filesin XML syntax need not have ajsp:root element asits root el ement.

Thejsp:root element has two main uses. Oneisto indicate that the JISPfileisin
XML syntax, without having to use configuration group elements nor using the
JSpx extension. The other use of the jsp:root element isto accomodate the genera
tion of content that is not asingle XML document: either a sequence of XML docu-
ments or some non-XML content.

A jsp:root element can be used to provide zero or more xmins attributes that
correspond to namespaces for the standard actions, for custom actions or for
generated template text. Unlikein JSP 1.2, not al tag libraries used within the JSP
document need to be introduced on the root; tag libraries can be incorporated as
needed inside the document using additional xmins attributes.

The jsp:root element has one mandatory element, the version of the JSP spec
that the page isusing.

When jsp:root is used, the container will, by default, not insert an XML
declaration; the default can be changed using the jsp:output €lement.

JavaServer Pages 2.0 Specification

1-138

JSP DOCUMENTS

Examples

The following example generates a sequence of two XML documents. No
XML declaration is generated.

<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page” version="2.0">
<table>foo</table>
<table>bar</table>

</jsp:root>

The following example generates one XML document. An XML declaration
is generated because of the use of jsp:output. The example is mostly instruc-
tional, as the same content could be generated dropping the jsp:root element.

<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page” version="2.0">
<jsp:output omit-xml-declaration="no"/>
<table>foo</table>

</jsp:root>

Syntax

The root element has one mandatory attribute, the version of the JSP specifi-
cation the page is using. No other attributes are defined in this element.

<jsp:root xmIns:jsp="http://java.sun.com/JSP/Page" version="2.0">
body...
</jsp:root>

The one valid, mandatory, attribute of jsp:root is the version of the JSP
specification used:

Table JSP.6-2 Attributes for the <jsp:root> standard action

version (required) The version of the JSP specification used in this
page. Valid valuesare "1.2" and "2.0". It isatranglation
error if the container does not support the specified version.

JSP.6.3.3 Thejsp:output Element

Thejsp:output element can be used in JSP documents and in tag filesin XML
syntax. The jsp:output element is described in detail in Section JSP5.16.

JavaServer Pages 2.0 Specification

Syntactic Elementsin JSP Documents 1-139

JSP.6.34 Thejsp:directive.page Element

Thejsp:directive.page €l ement defines anumber of page dependent properties
and communicates these to the JSP container. This element must be a child of the
root element. Its syntax is:

<jsp:directive.page page_directive_attr_list />

Where page_directive_attr_list is as described in Section JSP.1.10.1.

The interpretation of ajsp:directive.page element is as described in
Section JSP.1.10.1, and its scopeis the JSP document and any fragments included
through an include directive.

JSP.6.3.5 The|jsp:directive.include Element

Thejsp:directive.include element is used to substitute text and/or code at JSP
page trand ation-time. This element can appear anywhere within aJJSP document. Its
syntax is:

<jsp:directive.include file="relativeURLspec” />

Theinterpretation of ajsp:directive.include element isasin Section JSP.1.10.3.
The XML view of a JSP page does not contain jsp:directive.include elements,
rather the included file is expanded in-place. Thisis done to simplify validation.

JSP.6.3.6 Additional Directive Elementsin Tag Files

Chapter JSP.8 describes the tag, attribute and variable directives, which can be
used in tag files. The XML syntax for these directivesisthe same asin the XML
view (see Section JSP10.1.14, Section JSP.10.1.15, and Section JSP.10.1.16 for
details).

JSP.6.3.7 Scripting Elements

The usual scripting elements: declarations, scriptlets and expressions, can be
used in JSP documents, but the only valid formsfor these elementsin a JSP docu-
ment are the XML syntaxes; i.e. those using the elementsjsp:declaration, jsp:script-
let and jsp:expression.

Thejsp:declaration element is used to declare scripting language constructs that
are availableto all other scripting elements. A jsp:declaration € ement has no

JavaServer Pages 2.0 Specification

1-140

JSP DOCUMENTS

attributes and its body isthe declaration itself. The interpretation of ajsp:declara-
tion element isasin Section JSP1.12.1. ltssyntax is:

<jsp:declaration> declaration goes here </jsp:declaration>

Thejsp:scriptlet element is used to describe actions to be performed in response
to some request. Scriptlets are program fragments. A jsp:scriptlet element has no
attributes and its body is the program fragment that comprises the scriptlet. The
interpretation of ajsp:scriptlet element isasin Section JSP1.12.2. Its syntax is:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

Thejsp:expression element is used to describe complete expressionsin the
scripting language that get evaluated at response time. A jsp:expression element
has no attributes and its body is the expression. The interpretation of ajsp:expres-
sion element isasin Section JSP1.12.3. Its syntax is.

<jsp:expression> expression goes here </jsp:expression>

JSP.6.3.8 Other Standard Actions

The standard actions of Chapter 5 use a syntax that is consistent with XML syn-
tax and they can be used in JSP documents and in tag filesin XML syntax.

JSP.6.3.9 Template Content

A JSP page has no structure on its template content, and, correspondingly,
imposes no constraints on that content. On the other hand, JSP documents have
structure and some constraints are needed.

JSP documents can generate unconstrained content using jsp:text, as defined
in Section JSP.5.15. Jsp:text can be used to generate totally fixed content but it can
also be used to generate some dynamic content, as described in Section JSP.6.3.10
bel ow.

Fixed structured content can be generated using XML fragments. A template
XML element, an element that represents neither a standard action nor a custom
action, can appear anywhere where ajsp:text may appear in a JSP document. The
interpretation of such an XML element isto passits textual representation to the
current value of out, after the whitespace processing described in
Section JSP6.2.3.

JavaServer Pages 2.0 Specification

Syntactic Elementsin JSP Documents

For example, if the variable i has the value 3, and the JSP document is of the
form. :

Table JSP.6-3 Example 1 - Input

LineNo Source Text
1 <hel | o>
2 <hi >
3 <jsp:text> hi you all
4 </jsp:text>${i}
5 </ hi >
6 </ hel | o>

Theresultis:

Table JSP.6-4 Example 1 - Output

LineNo Output Text
1 <hel | o><hi > hi you all

2 3</ hi ></ hel | 0>

JSP.6.3.10 Dynamic Template Content

Custom actions can be used to generate any content, both structured and
unstructured. Future versions of the JSP specification may alow for custom
actions to check constraints on the generated content (see Section JSP.6.5.1) but
the current specification has no standards support for any such constraints.

The most flexible standard mechanism for dynamic content is jsp:element.
jsp:element, together with jsp:attribute and jsp:body can be used to generate any
element. Further details of jsp:element, jsp:attribute and jsp:body are givenin
Section JSP5.14, in Section JSP5.10 and in Section JSP5.11. The following
example isfrom that section

<jsp:element
name="${content.headerName}’
xmins:jsp="http://java.sun.com/JSP/Page”>
<jsp:attribute name="lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

In some cases, the dynamic content that is generated can be described as
simple substitutions on otherwise static templates. JSP documents can have XML

JavaServer Pages 2.0 Specification

1-141

1-142

JSP DOCUMENTS

templates where EL expressions are used as the values of the body or of attributes.
For instance, the next exampl e uses the expression table.indent as the value of an
attribute, and the expression table.value as that for the body of an element:

<table indent="${table.indent}">
<row>${table.value}</row>
</table>

JSP.6.4 Examples of JSP Documents

The following sections provide several annotated examples of JSP documents.

JSP.6.4.1 Example: A simple JSP document

This smple JSP document generates a table with 3 rowswith numeric values 1,
2, 3. The JSP document uses template XML eements intermixed with actions from
the JSP Standard Tag Library.

<table size="${3}">
<c:forEach
xmins:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="${3}">
<row>${counter}</row>
</c:forEach>
</table>

Some comments:

» The XML template elements are <table> and <row>. The custom action ele-
ment is <c:forEach>

» The JSP standard tag library isintroduced through the use of its URI
namespace and the specific prefix used, ¢ in this case, isirrelevant. The prefix
isintroduced in a non-root element, and the top element of the document is
dtill <table>.

» The expression ${counter} is used within the <row> template element.

» The expression ${3} (3 would have been equally good, but an expression is
used for expository reasons) is used within the value of an attribute in both the
XML template element <table> and in the custom action element
<c:forEach>.

JavaServer Pages 2.0 Specification

Examples of JSP Documents

» The JSP document does not have an xml declaration - we are assuming the en-
coding of thefiledid not requireit, e.g. it used UTF-8, - but the output will in-
clude an xml declaration due to the defaulting rules and to the absence of
jsp:output element directing the container to do otherwise.

The JSP document above does not generate an XML document that uses
namespaces, but the next example does.

JSP.6.4.2 Example: Generating Namespace-awar e documents

<table
xmins="http://table.com/Tablel"
size="${3}">
<c:forEach
xmins:;c="http://java.sun.com/jsp/jstl/core"”
var="counter" begin="1" end="${3}">
<row>${counter}</row>
</c:forEach>
</table>

Thisexampleis essentially the same as the one above, except that a default
namespace isintroduced in the top element The namespace applies to the unquali-
fied elements: <table> and <row>. Also note that if the default namespace were to
correspond to acustom action, then the elements so effected would be interpreted as
invocations on custom actions or tags.

Although the JSP container understands that this document is a namespace-
aware document. the JSP 2.0 container does not really understand that the
generated content is awell-formed XML document and, as the next example
shows, a JSP document can generate other types of content.

JSP.6.4.3 Example: Generating non-XML documents

<jsp:root
xmins:c="http://java.sun.com/jsp/jstl/core"”
xmins:jsp="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>

</jsp:root>

JavaServer Pages 2.0 Specification

1-143

1-144

JSP DOCUMENTS

Thisexamplejust generates 123. Thereisno xml declaration generated because
there is no <jsp:output> eement to modify the default rule for when a JSP docu-
ment has <jsp:root>. No additional whitespace isintroduced because there is none
within the <jsp:text> element.

The previous example used elements in the JSP namespace. That example
used the jsp prefix, but, unlike with JSP pagesin JSP syntax, the name of the
prefix isirrelevant (although highly convenient) in JSP documents: the JSP URI is
the only important indicative and the corrent URI should be used, and introduced
via a namespace attribute.

For example, the same output would be generated with the following modifica
tion of the previous example:

<wombat:root
xmins:c="http://java.sun.com/jspl/jstl/core"
xmins:wombat="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<wombat:text>${counter}</wombat:text>

</c:forEach>

</wombat:root>

On the other hand, although the following example usesthe jsp prefix the URI
used in the namespace attribute is not the JSP URI and the JSP document will
generate as output an XML document with root <jsp:root> using the URI "http://
johnsonshi ppi ngproducts.con”.

<jsp:root
xmins:c="http://java.sun.com/jspl/jstl/core"
xmlns:jsp="http://johnsonshippingproducts.com"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>

</jsp:root>

Finally, note that, since a JSP document is awell-formed, namespace-aware
document, prefixes, including jsp cannot be used without being introduced
through a namespace attribute.

JavaServer Pages 2.0 Specification

Examples of JSP Documents 1-145

JSP.6.4.4 Example: Using Custom Actionsand Tag Files

Custom actions are frequently used within a JSP document to generate portions
of XML content. The JSP specification treats this content as plain text, with no
intepretation nor congtraints imposed on it. Good practice, though, suggests abstrac-
tions that organize the content along well-formed fragments.

The following example generates an XHTML document using tag library
abstractions for presentation and data access, made available through the prefixes
u and data respectively.

<html xmlns="http://www.w3.0rg/1999/xhtm|"
xmins:jsp="http://java.sun.com/JSP/Page"
xmins:;c="http://java.sun.com/jsp/jstl/core"”
xmlns:u="urn:jsptagdir:/WEB-INF/tags/mylib/"
xmins:data="http://acme.com/functions">
<c:set var="title" value="Best Movies" />
<u:headinfo title="${title}"/>
<body>
<h1>${title}</h1>
<h2>List of Best Movies</h2>

${s.index}${m.title}
</c:forEach>

</body>
</html>

For convenience we use the <c:set> JSTL action, which defines variables and
associates values with them. This allows grouping in a single place of definitions
used elsawhere.

The action <u:headlnfo> could be implemented either through a custom
action or through atag. For example, asatag it could be defined by the following
code:

JavaServer Pages 2.0 Specification

1-146 JSP DOCUMENTS

<jsp:root xmIns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.tag />
<jsp:directive.attribute name="title” required="true" />
<head>
<meta http-equiv="content-type"
content="text/html;charset=${pageCharSet}" />
<title>${title}</title>
</head>
</jsp:root>

where pageCharSet is a variable with a value as iso-8859-1.
Note that thistag is a JSP document (because of the jsp:root declaration), and,

assuch, itisvalidated by the container. Also note that the content that is generated
in this case is not using QNames, which means that the interpretation of the
generated elements can be’ captured’ based on the invocation context. That isthe
case here, asthere isadefault namespace active (that of XHTML) wherethetagis
being invoked.

JSP.6.5 Possible Future Directions for JSP documents

This section is non-normative. Two features are sketched briefly here to elicit
input that could be used on future versions of the JSP specification.

JSP.6.5.1 Generating XML Content Natively

All JSP 2.0 content is textual, even when using JSP documents to generate
XML content. Thisis quite acceptable, and even ideal, for some applications, but in
some other applications XML documents are the main data type being mani pul ated.
For exampl e, the data source may be an XML document repository, perhaps queried
using XQuery, some of the manipulation on this data interna to the JSP page will
use XML concepts (XPath, XSTL operations), and the generated XML document
may be part of some XML pipeline.

In one such application, it is appealing not to transform back and forth
between a stream of characters (text) and a parsed representation of the XML
document. The JSP expert group has explored different approaches on how such
XML -awareness could be added, and a future version of JSP could support this
functionality.

JavaServer Pages 2.0 Specification

Possible Future Directions for JSP documents

JSP.6.5.2 Schema and Xl nclude Support

The current specification only requires DTD validation support for JSP docu-
ments. A more flexible schemalanguage, like XML Schema, could be useful and
could be explored by afuture version of the JSP specification.

Similarly, future versions of the specification may also consider support for
Xlnclude.

JavaServer Pages 2.0 Specification

1-147

1-148 JSP DOCUMENTS

JavaServer Pages 2.0 Specification

cunerenJOP. 7

Tag Extens ons

T his chapter describesthe tag library facility for introducing new actionsinto
aJSP page. Thetag library facility includes portable run-time support, avalidation
mechanism, and authoring tool support. Both the classic JSP 1.2 style tag extension
mechanism and the newer JSP 2.0 simpl e tag extension mechanism are described. In
Chapter JSP.8, “ Tag Files’, amechanism for authoring tag extensions using only
JSP syntax is described. This brings the power of tag extensionsto page authors that
may not know the Java programming language.

This chapter also provides an overview of the tag library concept. It describes
the Tag Library Descriptor, and the taglib directive. A detailed description of the
APIsinvolved follows in Chapter JSP.13.

JSP.7.1 I ntroduction

A Tag Library abstracts functionality used by a JSP page by defining a special-
ized (sub)language that enables a more natural use of that functionality within JSP
pages.
The actionsintroduced by the Tag Library can be used by the JSP page author
in JSP pages explicitly, when authoring the page manually, or implicitly, when
using an authoring tool. Tag Libraries are particularly useful to authoring tools
because they make intent explicit and the parameters expressed in the action
instance provide information to the tool.

Actionsthat are delivered astag libraries are imported into a JSP page using
thetaglib directive. They are available for use in the page using the prefix given by
the directive. An action can create new objects that can be passed to other actions,
or can be manipulated programmatically through a scripting element in the JSP

page.

JavaServer Pages 2.0 Specification 1-149

1-150

TAG EXTENSIONS

The semantics of a specific custom action in atag library is described viaatag
handler classwhich isusualy instantiated at runtime by the JSP page implementa-
tion class. When the tag library iswell known to the JSP container
(Section JSP7.3.9), the Container can use aternative implementations aslong asthe
semantics are preserved.

Tag libraries are portable: they can be used in any legal JSP page regardless of
the scripting language used in that page.

The tag extension mechanism includes information to:

Execute a JSP page that uses the tag library.
 Author or modify a JSP page.
Validate the JSP page.

Present the JSP page to the end user.

A Tag Library is described viathe Tag Library Descriptor (TLD), an XML
document that is described below.

JSP.7.1.1 Goals

The tag extension mechanism described in this chapter addresses the following
goals. It isdesigned to be:

» Portable - An action described in atag library must be usable in any JSP con-
tainer.

» Smple - Unsophisticated users must be able to understand and use this mech-
anism. Vendors of JSP functionality must find it easy to make it available to
users as actions.

» Expressive - The mechanism must support a wide range of actions, including
nested actions, scripting elementsinside action bodies, and creation, use, and
updating of scripting variables.

» Usable from different scripting languages - Although the JSP specification
currently only defines the semantics for scripts in the Java programming lan-
guage, we want to leave open the possibility of other scripting languages.

* Built upon existing concepts and machinery - We do not want to reinvent what
exists elsewhere. Also, we want to avoid future conflicts whenever we can pre-
dict them.

JavaServer Pages 2.0 Specification

Introduction 1-151

JSP.7.1.2 Overview

The processing of a JSP page conceptually follows these steps:
Parsing

JSP pages can be authored using two different syntaxes: a JSP syntax and an
XML syntax. The semantics and validation of a JSP syntax page is described with
reference to the semantics and validation of an equivalent document in the XML
syntax.

Thefirst step isto parse the JSP page. The pagethat is parsed is as expanded
by the processing of include directives. Information inthe TLD isused in this
step, including the identification of custom tags, so thereis some processing of the
taglib directivesin the JSP page.

Validation

Thetag librariesin the XML document are processed in the order in which
they appear in the page.

Each library is checked for avalidator class. If oneis present, the whole
document is made avail able to its validate method as a PageData object. As of JSP
2.0, the Container must provide ajsp:id attribute. This information can be used to
provide location information on errors.

Each custom tag in the library is checked for a TagExtralnfo class. If oneis
present, its validate method is invoked. The default implementation of validate is
to call isvalid. See the APIsfor more details.

Translation

Finally, the XML document is processed to create a JSP page implementation
class. This process may involve creating scripting variables. Each custom action
will provide information about variables, either statically in the TLD, or more
flexibly by using the getVariableinfo method of a TagExtrainfo class.

Execution

Once a JSP page implementation class has been associated with a JSP page,
the class will be treated as any other servlet class: Requests will be directed to
instances of the class. At run-time, tag handler instances will be created and
methods will be invoked in them.

JavaServer Pages 2.0 Specification

1-152

TAG EXTENSIONS

JSP.7.1.3 Classic Tag Handlers

A classic tag handler is a Java class that implements the Tag, IterationTag, or
BodyTag interface, and is the run-time representation of a custom action.

The JSP page implementation classinstantiates atag handler object, or reuses
an existing tag handler object, for each action in the JSP page. The handler object
is aJava object that implements the javax.servlet.jsp.tagext. Tag interface. The
handler abject is responsible for the interaction between the JSP page and
additional server-side objects.

There are three main interfaces: Tag, IterationTag, and BodyTag.

» The Tag interface defines the basic methods needed in all tag handlers. These
methodsinclude setter methodsto initialize atag handler with context dataand
attribute values of the action, and the doStartTag and doEndTag methods.

» The IterationTag interface is an extension to Tag that provides the additional
method, doAfterBody, invoked for the reevaluation of the body of the tag.

» The BodyTag interface is an extension of IterationTag with two new methods
for when the tag handler wants to manipulate the tag body: setBodyContent
passes a buffer, the BodyContent object, and dolnitBody provides an opportuni-
ty to process the buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies making an existing Java object atag handler.
There are also two support classes that can be used as base classes. TagSupport
and BodyTagSupport.

JSP 1.2 introduced a new interface designed to help maintain data integrity
and resource management in the presence of exceptions. The TryCatchFinally
interfaceisa“mix-in” interface that can be added to a class implementing any of
Tag, IterationTag, Or BodyTag.

JSP.7.1.4 Simple Examples of Classic Tag Handlers

As examples, we describe prototypica uses of tag extensions, briefly sketching
how they take advantage of these mechanisms.

JSP.7.1.4.1 Plain Actions

The simplest type of action just does something, perhaps with parametersto
modify what the “something” is, and improve reusability.

Thistype of action can be implemented with atag handler that implementsthe
Tag interface. The tag handler needsto use only the doStartTag method whichis

JavaServer Pages 2.0 Specification

Introduction

invoked when the start tag is encountered. It can access the attributes of the tag
and information about the state of the JSP page. The information is passed to the
Tag object through setter method calls, prior to the call to doStartTag.

Since simple actions with empty tag bodies are common, the Tag Library
Descriptor can be used to indicate that the tag is alwaysintended to be empty. This
indication leads to better error checking at translation time, and to better code
quality in the JSP page implementation class.

JSP.7.1.4.2 Actionswith a Body

Another set of simple actions require something to happen when the start tag is
found, and when the end tag is found. The Tag interface can also be used for these
actions. The doEndTag issimilar to the doStartTag method except that it isinvoked
when the end tag of the action isencountered. The result of the doEndTag invocation
indicates whether the remainder of the pageisto be evaluated or not.

JSP.7.1.4.3 Conditionals

In some cases, a body needs to be invoked only when some (possibly complex)
condition happens. Again, thistype of action is supported by the basic Tag interface
through the use of return values in the doStartTag method.

JSP.7.1.4.4 |terations

For iteration the IterationTag interface is needed. The doAfterBody method is
invoked to determine whether to reeval uate the body or not.

JSP.7.1.45 Actionsthat Processtheir Body

Consider an action that evaluates its body many times, creating a stream of
response data. The IterationTag protocol is used for this.

If the result of the reinterpretation is to be further manipulated for whatever
reason, including just discarding it, we need away to divert the output of
reevaluations. Thisis done through the creation of a BodyContent object and use
of the setBodyContent method, which is part of the BodyTag interface. BodyTag
a so provides the dolnitBody method which isinvoked after setBodyContent and
before the first body evaluation provides an opportunity to interact with the body.

JSP.7.1.4.6 Cooperating Actions

Cooperating actions may offer the best way to describe a desired functionality.
For example, one action may be used to describe information leading to the creation

JavaServer Pages 2.0 Specification

1-153

1-154

TAG EXTENSIONS

of aserver-side object, while another action may use that object elsewherein the
page. These actions may cooperate explicitly, via scoped variables. one action cre-
ates an object and gives it a name; the other refers to the object through the name.
Two actions can also cooperate implicitly. A flexible and convenient
mechanism for action cooperation uses the nested structure of the actions to
describe scoping. Thisis supported in the specification by providing each tag
handler with its parent tag handler (if any) through the setParent method. The fin-
dAncestorWithClass static method in TagSupport can then be used to locate a tag
handler, and, once located, to perform valid operations on the tag handler.

JSP.7.1.4.7 Actions Defining Scripting Variables

A custom action may create server-side objects and make them available to
scripting elements by creating or updating the scripting variables. The variablesthus
affected are part of the semantics of the custom action and are the responsibility of
the tag library author.

Thisinformation is used at JSP page trandation time and can be described in
one of two ways: directly inthe TLD for simple cases, or through subclasses of
TagExtralnfo. Either mechanism will indicate the names and types of the scripting
variables.

At request time the tag handler will associate objects with the scripting
variables through the pageContext object.

It isthe responsibility of the JSP page trandator to automatically supply the
code required to do the “ synchronization” between the pageContext values and the
scripting variables.

There are some sections of JSP where scripting is not allowed. For example,
thisisthe case in atag body where the body-content is declared as ‘ scriptless’, or
in apage where <scripting-invalid> is true. In these sections, it is not possible to
access scripting variables directly via scriptlets or expressions, and therefore the
container need not synchronize them. Instead, the page author can use the EL to
access the pageContext val ues.

JSP.7.1.5 Simple Tag Handlers

The API and invocation protocol for classic tag handlers is necessarily some-
what complex because scriptlets and scriptlet expressionsin tag bodies can rely on
surrounding context defined using scriptletsin the enclosing page.

With the advent of the Expression Language (EL) and JSP Standard Tag
Library (JSTL), it isnow feasible to develop JSP pages that do not need scriptlets

JavaServer Pages 2.0 Specification

Introduction 1-155

or scriptlet expressions. This allows us to define atag invocation protocol that is
easier to use for many use cases.

In that interest, JSP 2.0 introduces a new type of tag extension called aSimple
Tag Extension. Simple Tag Extensions can be written in one of two ways:

* InJava, by defining a class that implements the javax.servlet.jsp.tagext.Simple-
Tag interface. This classisintended for use by advanced page authors and tag
library developers who need the flexibility of the Javalanguage in order to
write their tag handlers. The javax.servlet.jsp.tagext.SimpleTagSupport class
provides a default implementation for al methods in SimpleTag.

 In JSP, using tag files. This method can be used by page authors who do not
know Java. It can also be used by advanced page authors or tag library devel-
opers who know Java but are producing tag libraries that are presentation-cen-
tric or can take advantage of existing tag libraries. See Chapter JSP.8, “Tag
Files’ for more details.

Thelifecycle of a Simple Tag Handler is straightforward and is not
complicated by caching semantics. Once a Simple Tag Handler isinstantiated by
the Container, it is executed and then discarded. The same instance must not be
cached and reused. Initial performance metrics show that caching a tag handler
instance does not necessarily lead to greater performance, and to accommodate
such caching makes writing portable tag handlers difficult and makes the tag
handler prone to error.

In addition to being simpler to work with, Simple Tag Extensions do not
directly rely on any servliet APIs, which allows for potentia future integration
with other technologies. Thisisfacilitated by the JspContext class, which Page-
Context now extends. JspContext provides generic services such as storing the
JspWriter and keeping track of scoped attributes, whereas PageContext has func-
tionality specific to serving JSPsin the context of serviets. Whereasthe Tag inter-
face relies on PageContext, SimpleTag only relies on JspContext.

The body of a Simple Tag, if present, istrandated into a JSP Fragment and
passed to the setJspBody method. The tag can then execute the fragment as many
times as needed. See Section JSP.7.1.6 for more details on JSP Fragments.
Because JSP fragments do not support scriptlets, the <body-content> of a
SimpleTag cannot be“JSP”. A TLD isinvalid if it specifies“JSP” asthevaluefor
<body-content> for atag whose handler implements the SimpleTag interface. JSP
containers are recommended to but not required to produce an error if “JSP” is
specified in this case.

JavaServer Pages 2.0 Specification

1-156

TAG EXTENSIONS

JSP.7.1.6 JSP Fragments

During the translation phase, various pieces of the page are trandated into
implementations of the javax.servlet.jsp.tagext.JspFragment abstract class, before
being passed to atag handler. Thisis done automatically for any JSP code in the
body of anamed attribute (onethat is defined by <jsp:attribute>) that is declared to
be afragment, or of type JspFragment, inthe TLD. Thisis also automatically
donefor the body of any tag handled by a Simple Tag handler. Once passed in, the
tag handler can then eval uate and re-evaluate the fragment as many times as
needed, or even passit along to other tag handlers, in the case of Tag Files.

A JSP fragment can be parameterized by atag handler by setting page-scoped
attributesin the JspContext associated with the fragment. These attributes can then
be accessed viathe EL.

A trandation error must occur if apiece of JSP code that isto be trandated
into a JSP Fragment contains scriptlets or scriptlet expressions.

See Chapter JSP.13, “ Tag Extension API” for more details on the JspFragment
abstract class.

JSP.7.1.7 Simple Examples of Simple Tag Handlers

In this section, we revisit the prototypical uses of classic tag extensions, aswas
presented in Section JSP.7.1.4, and briefly describe how they areimplemented using
simple tag handlers.

JSP.7.1.7.1 Plain Actions

To implement plain actions, the tag library developer creates a class that
extends SimpleTagSupport and implements the doTag method. The details on
accessing attributes and enforcing an empty body are the same as with classic tag
handlers. By default, the rest of the page will be evaluated after invoking doTag.
To signal that the page is to be skipped, doTag throws SkipPageException.

JSP.7.1.7.2 Actionswith a Body

To implement actions with a body, the tag library developer implements doTag
and invokes the body at any point by calling invoke on the JspFragment object
passed in viathe setJspBody method. The tag handler can provide the fragment
access to variables through the JspContext object.

JavaServer Pages 2.0 Specification

Introduction 1-157

JSP.7.1.7.3 Conditionals

All conditiona logic ishandled in the doTag method. If the body is not to be
invoked, the tag library developer smply does not call invoke on the JspFragment
object passed in via setJspBody.

JSP.7.1.7.4 |terations

All iteration logic is handled in the doTag method. The tag library developer
simply callsinvoke on the JspFragment object passed in viasetJspBody as many
times as needed.

JSP.7.1.75 Actionsthat Processtheir Body

To divert the result of the body invocation, the tag library devel oper passes a
java.io.Writer object to the invoke method on the body JspFragment. Unlike the stan-
dard tag handler’s BodyContent solution, the result of the invocation does not need
to be buffered.

JSP.7.1.7.6 Cooperating Actions

Cooperating actions work the same way as with classic tag handlers. A setPar-
ent method is available in the SimpleTag interface and is called by the container
before calling doTag if one tag invocation is nested within another. A findAncestor-
WithClass method isavailable on SimpleTagSupport. Thisshould be used, instead of
TagSupport.findAncestorWithClass(), in all cases where the desired return value
may implement SimpleTag.

Note that SimpleTag does hot extend Tag. Because of this, the JspTag common
baseisused inthese new APIsinstead of Tag. Furthermore, because Tag.setParent
only accepts an object of type Tag, tag collaboration becomes more difficult when
classic tag handlers are nested inside SimpleTag custom actions.

To make things easier, the javax.servlet.jsp.tagext. TagAdapter class can wrap
any SimpleTag and expose it asif it were aTag instace. The original JspTag can be
retrieved through its getAdaptee method. Whenever calling the setParent method
on aclassic Tag in a case where the outer tag does not implement Tag, the JSP
Container must construct a new TagAdapter and call setParent on the classic Tag
passing in the adapter.

See Chapter JSP.13, “Tag Extension API” for more details on these APIs.

JavaServer Pages 2.0 Specification

1-158

TAG EXTENSIONS

JSP.7.1.8 Attributes With Dynamic Names

Prior to JSP 2.0, the name of every attribute that atag handler accepted was pre-
determined at the time the tag handler was devel oped. It is sometimes useful, how-
ever, to be able to define atag handler that accepts attributes with dynamic names
that are not known until the page author uses the tag. For example, it istime con-
suming and error-prone to anticipate what attributes a user may wish to passto atag
that mimicsan HTML element.

New to JSP 2.0 isthe ahility to declare that atag handler accepts additional
attributes with dynamic names. Thisis done by having the tag handler implement
the javax.servlet.jsp.tagext. DynamicAttributes interface. See Chapter JSP.13, “Tag
Extension API” for more details on thisinterface.

JSP.7.1.9 Event Listeners

A tag library may include classes that are event listeners (see the Servlet 2.4
specification). The listeners classes are listed in the tag library descriptor and the
JSP container automatically instantiates them and registersthem. A Container is
required to locate all TLD files (see Section JSP.7.3.1 for details on how they are
identified), read their listener elements, and treat the event listeners as extensions of
those listed in web.xml.

The order in which the listeners are registered is undefined, but they are
registered before application start.

JSP.7.2 TagLibraries

A tag library isacollection of actions that encapsulate some functionality to be
used from within a JSP page. A tag library is made available to a JSP page through a
taglib directive that identifiesthe tag library viaa URI (Universal Resource Identi-
fier).

The URI identifying atag library may be any valid URI aslong asit can be
used to uniquely identify the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library
Description (TLD) file and with tag handler classesasindicated in
Section JSP.7.3 below.

JSP.7.2.1 Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept atag library
that is packaged as a JAR file. When deployed in a JSP container, the standard JAR

JavaServer Pages 2.0 Specification

Tag Libraries 1-159

conventions described in the Servlet 2.4 specification apply, including the conven-
tions for dependencies on extensions.

Packaged tag libraries must have at least one tag library descriptor file. The
JSP 1.1 specification alowed only asingle TLD, in META-INF/taglib.tld, but as of
JSP 1.2 multipletag libraries are allowed. See Section JSP.7.3.1 for how TLDsare
identified.

Both Classic and Simple Tag Handlers (implemented either in Java or astag
files) can be packaged together.

JSP.7.2.2 L ocation of Java Classes

A tag library contains classes for instantiation at trandation time and classesfor
instantiation at request time. The former include classes such as TagLibraryValidator
and TagExtralnfo. The latter include tag handler and event listener classes.

The usual conventions for Java classes apply: as part of aweb application,
they must reside either in aJAR filein the WEB-INF/lib directory, or in adirectory
in the WEB-INF/classes directory.

A JAR containing packaged tag libraries must be dropped into the WEB-INF/
lib directory to make its classes available at request time (and also at translation
time, see Section JSP.7.3.7). The mapping between the URI and the TLD is
explained further below.

JSP.7.2.3 Tag Library directive

Thetaglib directive in a JSP page declares that the page uses atag library,
uniquely identifiesthetag library using aURI, and associates atag prefix with usage
of the actionsin the library.

A JSP container maps the URI used in the taglib directive into a Tag Library
Descriptor in two steps: it resolves the URI into a TLD resource path, and then
derivesthe TLD object from the TLD resource path.

If the JSP container cannot locate a TLD resource path for agiven URI, afatal
tranglation error shall result. Similarly, it isafatal trandlation error for a URI
attribute value to resolve to two different TLD resource paths.

Itisafatal tranglation error for the taglib directive to appear after actions using
the prefix introduced by it.

JavaServer Pages 2.0 Specification

1-160

TAG EXTENSIONS

JSP.7.3 TheTag Library Descriptor

The Tag Library Descriptor (TLD) isan XML document that describes atag
library. The TLD for atag library is used by a JSP container to interpret pages that
include taglib directives referring to that tag library. The TLD is also used by JSP
page authoring tools that will generate JSP pages that use alibrary, and by authors
who do the same manually.

The TLD includes documentation on the library as awhole and on its
individual tags, version information on the JSP container and on the tag library,
and information on each of the actions defined in the tag library.

The TLD may name a TagLibraryValidator class that can validate that a JSP
page conforms to a set of constraints expected by the tag library.

Each action in the library is described by giving its name, the class of itstag
handler, information on any scripting variables created by the action, and
information on attributes of the action. Scripting variable information can be
givendirectly in the TLD or through a TagExtralnfo class. For each valid attribute
thereis an indication about whether it is mandatory, whether it can accept request-
time expressions, and additional information.

A TLD fileisuseful for providing information on atag library. It can be read
by tools without instantiating objects or loader classes. Our approach conformsto
the conventions used in other J2EE technologies.

Asof JSP 2.0, the format for the Tag Library Descriptor is represented in
XML Schema. This allows for amore extensible TLD that can be used as atrue
single-source document.

JSP.7.3.1 Identifying Tag Library Descriptors

Tag library descriptor files have names that use the extension .tid, and the
extension indicates atag library descriptor file. When deployed inside a JAR file,
thetag library descriptor files must bein the META-INF directory, or a subdirectory
of it. When deployed directly into aweb application, the tag library descriptor
files must aways be in the WEB-INF directory, or some subdirectory of it. TLD
files should not be placed in /WEB-INF/classes or /WEB-INF/lib.

The XML Schemafor a TLD document is http://java.sun.com/xml/ns/j2ee/
web-jsptaglibrary_2_0.xsd. See Section JSPC.1, “XML Schemafor TLD, JSP
2.0".

Note that tag files, which collectively form tag libraries, may or may not have
an explicitly defined TLD. In the case that they do not, the container generates an
implicit TLD that can be referenced using the tagdir attribute of the taglib

JavaServer Pages 2.0 Specification

The Tag Library Descriptor 1-161

directive. More detail s about identifying thisimplicit Tag Library Descriptor can
be found in Chapter JSP.8, “Tag Files'.

JSP.7.3.2 TLD resource path

A URI inataglib directiveis mapped into acontext relative path (asdiscussed in
Section JSP1.2.1). The context relative path isa URL without a protocol and host
components that startswith / and is called the TLD resource path.

The TLD resource path is interpreted relative to the root of the web
application and should resolveto a TLD file directly, or to aJAR file that hasa
TLD file at location META-INF/taglib.tld. If the TLD resource path is not one of
these two cases, afatal translation error will occur.

The URI describing atag library is mapped to a TLD resource path though a
taglib map, and a fallback interpretation that isto be used if the map does not
contain the URI. Thetaglib map is built from an explicit taglib map in web.xml
(described in Section JSP.7.3.3) that is extended with implicit entries deduced
from packaged tag libraries in the web application (described in
Section JSP.7.3.4), and implicit entries known to the JSP container. The fallback
interpretation is targetted to a casual use of the mechanism, asin the development
cycle of the Web Application; in that case the URI isinterpreted as adirect path to
the TLD (see Section JSP.7.3.6.2).

The following order of precedence applies (from highest to lowest) when
building the taglib map (see the following sections for details):

1. Taglib Map in web.xml
2. Implicit Map Entriesfrom TLDs
- TLDsin AR filesin WEB-INF/lib

» TLDsunder WEB-INF
3. Implicit Map Entries from the Container

JSP.7.3.3 Taglib Map in web.xml

The web.xml file can include an explicit taglib map between URIsand TLD
resource paths described using the taglib eements of the Web Application Deploy-
ment descriptor in WEB-INF/web.xml. See Section JSP.3.2 for more details.

JavaServer Pages 2.0 Specification

1-162 TAG EXTENSIONS

JSP.7.3.4 Implicit Map Entriesfrom TLDs

Thetaglib map described in web.xml is extended with new entries extracted
from TLD filesin the Web Application. The new entries are computed as follows:

» The container searchesfor all fileswith a.tld extension under /WEB-INF or a
subdirectory, and inside JAR filesthat are in /WEB-INF/lib. When examining a
JAR file, only resources under /META-INF or a subdirectory are considered.
The order in which these files are searched for isimplementation-specific and
should not be relied on by web applications.

» Each TLD fileisexamined. If it has a <uri> element, then a new <taglib> ele-
ment is created, with a <taglib-uri> subelement whose value is that of the <uri>
element, and with a <taglib-location> subelement that refersto the TLD file.

* If the created <taglib> element has a different <taglib-uri> to any in the taglib
map, it is added.

This mechanism provides an automatic URI to TLD mapping as well as
supporting multiple TLDs within a packaged JAR. Note that this functionality
does not require explicitly naming the location of the TLD file, which would
reguire a mechanism like the jar:protocol.

Note also that the mechanism does not add duplicated entries.

JSP.7.35 Implicit Map Entriesfrom the Container

The Container may also add additional entriesto thetaglib map. Asin the previ-
ous case, the entries are only added for URIs that are not present in the map. Con-
ceptually the entries correspond to TLD describing these tag libraries.

These implicit map entries correspond to libraries that are known to the
Container, who is responsible for providing their implementation, either through
tag handlers, or via the mechanism described in Section JSP.7.3.9.

JSP.7.3.6 Deter mining the TL D Resour ce Path

The TLD resource path can be determined from the uri attribute of ataglib direc-
tive as described below. In the explanation below an absolute URI is one that starts
with a protocol and host, while arelative URI specificationisasin section 2.5.2, i.e.
one without the protocol and host part.

All steps are described asif they were taken, but an implementation can use a
different implementation strategy as long as the result is preserved.

JavaServer Pages 2.0 Specification

The Tag Library Descriptor 1-163

JSP.7.3.6.1 Computing TLD L ocations

The taglib map generated in Sections JSP.7.3.3, JSP.7.3.4 and JSP.7.3.5 may
contain one or more <taglib></taglib> entries. Each entry isidentified by ataglib_uri,
which isthe value of the <taglib-uri> subelement. Thistaglib_uri may be an abso-
lute URI, or arelative URI spec starting with / or one not starting with /. Each
entry also defines ataglib_location asfollows:

« If the<taglib-location> subelement issomerel ative URI specification that starts
with a/ the taglib_location isthis URI.

« If the <taglib-location> subelement is somerelative URI specification that does
not start with /, thetaglib_location isthe resolution of the URI relative to /WEB-
INF/web.xml (the result of this resolution is arelative URI specification that
starts with /).

JSP.7.3.6.2 Computing the TLD Resour ce Path

The following describes how to resolve ataglib directive to compute the TLD
resource path. It is based on the value of the uri attribute of the taglib directive.

* |f uriisabs_uri, an absolute URI

Look in the taglib map for an entry whaose taglib_uri is abs_uri. If found, the
corresponding taglib_location isthe TLD resource path. If not found, atranslation
error israised.

 |f uriisroot_rel_uri, arelative URI that starts with/

Look in the taglib map for an entry whose taglib_uri isroot_rel_uri. If found,
the corresponding taglib_location isthe TLD resource path. If no such entry is
found, root_rel_uri isthe TLD resource path.

* |f uriisnoroot_rel_uri, arelative URI that does not start with /

Look in the taglib map for an entry whose taglib_uri isnoroot_rel_uri. If found,
the corresponding taglib_location isthe TLD resource path. If no such entry is
found, resolve noroot_rel_uri relative to the current JSP page where the directive
appears, that value (by definition, thisis arelative URI specification that starts
with /) isthe TLD resource path. For example, if /a/b/c.jsp references
..I./WEB-INF/my.tld, then if thereis no taglib_location that matches
..I./WEB-INF/my.tld, the TLD resource path would be /WEB-INF/my.tid.

JavaServer Pages 2.0 Specification

1-164

TAG EXTENSIONS

JSP.7.3.6.3 Usage Considerations

The explicit web.xml map provides aexplicit description of thetag librariesthat
are being used in aweb application.

Theimplicit map from TLDs meansthat a JAR fileimplementing atag library
can be dropped in and used immediatedly through its stable URIs.

The use of relative URI specifications in the taglib map enables very short
names in the taglib directive. For example, if themap is:

<taglib>
<taglib-uri>/myPRlibrary</taglib-uri>
<taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-location>
</taglib>

then it can be used as:
<%@ taglib uri="/myPRlibrary” prefix="x" %>

Finally, the fallback rule allows ataglib directive to refer directly to the TLD.
This arrangement is very convenient for quick development at the expense of less
flexibility and accountability. For example, in the case above, it enables:

<%@ taglib uri="/WEB-INF/tlds/PRlibrary_1_4.tld" prefix="x" %>

JSP.7.3.7 Trandation-Time Class L oader

The set of classes available at trandation time is the same as that available at
runtime; the classesin the underlying Java platform, those in the JSP container, and
thosein the class filesin WEB-INF/classes, in the JAR filesin WEB-INF/lib, and,
indirectly those indicated through the use of the class-path attribute in the META-
INF/MANIFEST file of these JAR files.

JSP.7.3.8 Assembling a Web Application

As part of the process of assembling aweb application, the Application Assem-
bler will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirecto-
ries, place JSP pages, servlet classes, auxiliary classes, and tag librariesin the proper
places, and create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard JAR format can be
dropped directly into WEB-INF/lib. Thisautomatically adds all the TLDsinsidethe
JAR, making their URIs advertised in their <uri> elements visible to the URI to

JavaServer Pages 2.0 Specification

The Tag Library Descriptor 1-165

TLD map. The assembler may create taglib entriesin web.xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change
information that customizes atag library; see Section JSP.7.5.3.

JSP.7.3.9 Well-Known URIs

A JSP container may “know of” some specific URIs and may provide alternate
implementations for the tag libraries described by these URI's, but the user must see
the behavior asthat described by the required, portable tag library description
described by the URI.

A JSP container must always use the mapping specified for aURI in the
web.xml deployment descriptor if present. If the deployer wants to use the
platform-specific implementation of the well-known URI, the mapping for that
URI should be removed at deployment time.

JSP.7.3.10 Tag and Tag Library Extension Elements

The JSP 2.0 Tag Library Descriptor supports the notion of Tag Extension Ele-
ments and Tag Library Extension Elements. These are elements added to the TLD
by the tag library developer that provide additional information about the tag, using
a schema defined outside of the JSP specification.

The information contained in these extensions is intended to be used by tools
only, and is not accessible at compile-time, deployment-time, or run-time. JSP
containers must not alter their behavior based on the content, the presence, or the
absence of a particular Tag or Tag Library Extension Element. In addition, JSP
containers must consider invalid any tag library that specifies mustUnder-
stand="true” for any Tag or Tag Library Extension element. Any attempt to use an
invalid tag library must produce atranslation error. Thisisto preserve application
compatibility across containers.

The JSP container may use schemato validate the structure of the Tag Library
Descriptor. If it does so, any new content injected into Tag or Tag Library
Extension elements must not be validated by the JSP Container.

Tag Library Extension Elements provide extension information at the tag
library level, and are specified by adding a <taglib-extension> element as a child of
<taglib>. Tag Extension Elements provide extension information at the tag level,
and are specified by adding a <tag-extension> element as a child of <tag>. To use
these elements, an XML namespace must first be defined and the namespace must
be imported into the TLD.

JavaServer Pages 2.0 Specification

1-166

TAG EXTENSIONS

There are efforts under way in the JCP (Java Community Process) to define
standard extensions for enhanced tool support for JSP page authoring. Such
standard extensions should be used where appropriate.

JSP.7.3.10.1 Example

In the following non-normative example, afictitious company called ACME
has decided to enhance the page author’s experience by defining a set of Tag and
Tag Library Extension elements that cause sounds to be played when inserting
tags in a document.

In this hypothetical example, ACME has published an XML Schema at http://
www.acme.com/acme.xsd that defines the extensions, and has provided plug-ins
for various JSP-capable I DEs to recognize these extension elements.

Thefollowing exampletag library uses ACME's extensions to provide hel pful
voice annotations that describe how to use each tag in the tag library. Relevant
parts highlighted in bold:

<taglib xm ns="http://java.sun.com xm / ns/j 2ee”

xm ns: xsi =" http://ww. w3. or g/ 2001/ XM_Schene- i nst ance”

xm ns:acme="http://acne. conl”

xsi : schemaLocati on="http://java. sun.com xm / ns/j 2ee
http://java.sun.conm xm /ns/j2ee/ web-jsptaglibrary 2 0.xsd
http://acme.com http://acnme. com acne. xsd”

version="2.0">

<descri pti on>
Sinmple Math Tag Library.
Cont ai ns ACME sound ext ensi ons with hel pful voice annotations
that describe howto use the tags in this library.

</ descri pti on>

<tlib-version>1.0</tlib-version>

<short - nane>nmat h</ short - nane>

<t ag>

JavaServer Pages 2.0 Specification

The Tag Library Descriptor 1-167

<descri ption>Adds two nunbers</description>
<di spl ay- nane>add</ di spl ay- nane>
<nane>add</ name>
<t ag- cl ass>com f oobar . t ags. AddTag</t ag- cl ass>
<body- cont ent >enpt y</ body- cont ent >
<attribute>
<nane>x</ nane>
<t ype>j ava. | ang. Doubl e</ t ype>
</attribute>
<attribute>
<nane>y</ name>
<t ype>j ava. | ang. Doubl e</ t ype>
</attribute>
<t ag- ext ensi on nanespace="http://acne.conl”>
<I-- Extensions for tag sounds -->
<ext ensi on- el ement xsi:type="acne: acne- soundsType” >
<acme: ver si on>1. 5</ acne: ver si on>
<l-- Sound played for help on the add tag -->
<acne: t ag- sound>sounds/ add. au</ acrne: t ag- sound>
<l-- Sound played for help on the x attribute -->
<acrne: attri but e- sound nane="x">
sounds/ add- x. au
</ acne: attri but e- sound>
<I-- Sound that’s played for help on the yattribute -->
<acne: attri bute-sound name="y" >
sounds/ add-y. au
</acme:attri bute-sound>
</ ext ensi on- el enent >
</ t ag- ext ensi on>

</tag>
<t agl i b- ext ensi on nanespace="http://acne.conl”>
<l-- Extensions for taglibrary sounds-->

<ext ensi on- el enent xsi:type="acne: acnme- soundsType” >
<acme: ver si on>1. 5</ acne: ver si on>
<l-- Sound played when author inmports this taglib -->
<acme: i nport-sound>sounds/intro. au</ acne: i nport-sound>
</ ext ensi on- el enent >
</taglib-extensi on>
</taglib>

The corresponding acme.xsd file would look something like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

JavaServer Pages 2.0 Specification

1-168 TAG EXTENSIONS

<xsd: schena
t ar get Namespace="http://acme. con”
xm ns:j2ee="http://java. sun.conl xm /ns/j 2ee”
xm ns:acnme="http://acme. conl”
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena”
xm ns: xm =" http://ww. w3. or g/ XM/ 1998/ nanespace”
el enent For mDef aul t =" qual i fi ed”
attri but eFor nDef aul t ="unqual i fi ed”
version="1.0">

<xsd: annot at i on>
<xsd: docunent ati on>
This an XML Schema for sanmple Acne taglib extensibility
el enents, used to test TLD extensibility.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<|__ R R S S S S R R R Rk R R R R R R S R R -

<xsd: i nport nanespace="http://java.sun.conf xnm /ns/j2ee”
schemalLocation="../web-jsptaglibrary 2 0.xsd” />

<|__ IR R I I S O S -—>

<xsd: conpl exType name="acne-soundsType” >
<xsd: annot ati on>
<xsd: docunent ati on>
Ext ensi on for sounds associated with a tag
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="j 2ee: ext ensi bl eType” >
<xsd: sequence>
<xsd: el ement name="version” type="xsd:string”/>
<xsd: el enent nanme="tag-sound” type="xsd:string”
m nCccur s="0" maxQOccur s="unbounded”/ >
<xsd: el enent nanme="attri bute-sound”
m nCccur s="0" maxCOccur s="unbounded” >
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string”>
<xsd: attribute nanme="nane” use="required”
type="xsd:string” />
</ xsd: ext ensi on>

JavaServer Pages 2.0 Specification

Validation 1-169

</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el enent name="inport-sound” type="xsd:string”
m nCccurs="0" nmaxCccur s="unbounded”/ >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<|__ R I O O S I O S _—

</ xsd: schema>

JSP.7.4 Validation

There are anumber of reasons why the structure of a JSP page should conform
to some validation rules:

* Reguest-time semantics; e.g. a subelement may require the information from
some enclosing element at request-time..

 Authoring-tool support; e.g. atool may require an ordering in the actions.

» Methodological constraints; e.g. a development group may want to constrain
the way some features are used.

Validation can be done either at tranglation-time or at request-time. In general
tranglation-time validation provides a better user experience, and the JSP 2.0
specification provides a very flexible transl ation-time validation mechanism.

JSP.7.4.1 Trandation-Time M echanisms

Sometrandation-time validation is represented in the Tag Library Descriptor. In
sSome cases a TagExtralnfo class needs to be provided to supplement this informa-
tion.

JSP.7.4.1.1 Attribute I nfor mation

The Tag Library Descriptor contains the basic syntactic information. In particu-
lar, the attributes are described including their name, whether they are optional or

JavaServer Pages 2.0 Specification

1-170

TAG EXTENSIONS

mandatory, and whether they accept request-time expressions. Additionaly the
body-content element can be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author
can assume that the tag handler instance corresponds to an action that satisfies all
constraintsindicated in the TLD.

JSP.7.4.1.2 Validator Classes

A TagLibraryValidator class may belisted inthe TLD for atag library to request
that a JSP page be validated. The XML view of a JSP pageis exposed through a
PageData class, and the validator class can do any checksthetag library author may
have found appropriate.

The JSP container must uniquely identify all XML elementsin the XML view
of a JSP page through ajsp:id attribute. This attribute can be used to provide better
information on the location of an error.

The validator class mechanism is new as of the JSP 1.2 specification. A TagL-
ibraryValidator can be passed some initialization parametersin the TLD. This
eases the reuse of validator classes. We expect that validator classes will be
written based on different XML schema mechanisms (DTDs, XSchema, Relaxx,
others). Standard validator classes may be incorporated into alater version of the
JSP specification if aclear schema standard appears at some point.

JSP.7.4.1.3 TagExtral nfo Class Validation

Additional trandation-time validation can be done using the validate method in
the TagExtralnfo class. The validate method isinvoked at trandation-timeand is
passed a TagData instance as its argument. As of JSP 2.0, the default behavior of
validate isto call theisvalid method.

The isvalid mechanism was the original validation mechanism introduced in
JSP 1.1 with the rest of the Tag Extension machinery. Tag libraries that are
designed to run in JSP 1.2 containers or higher should use the validator class
mechanism. Tag libraries that are designed to run in JSP 2.0 containers or higher
that wish to use the TagExtralnfo validation mechanism are encouraged to
implement the validate method in favor of the isvalid method due to the ability to
provide better validation messages. Either method will work, though
implementing both is not recommended.

JSP.7.4.2 Request-TimeErrors

In some cases, additional request-time validation will be done dynamically
within the methodsin the tag handler. If an error is discovered, an instance of JspEx-

JavaServer Pages 2.0 Specification

Conventions and Other | ssues 1-171

ception can bethrown. If uncaught, this object will invoke the errorpage mechanism
of the JSP specification.

JSP.7.5 Conventions and Other |ssues

This section is not normative, athough it reflects good design practices.

JSP.75.1 How to Define New I mplicit Objects
We advocate the following style for the introduction of implicit objects:

» Defineatag library.
» Add an action called defineObjects to define the desired abjects.

The JSP page can make these objects available as follows:

<%@ taglib prefix="me" uri="......" %>
<me:defineObjects />
.... Start using the objects....

This approach has the advantage of requiring no new machinery and of
making very explicit the dependency.

In some cases there may be an implementation dependency in making these
objects available. For example, they may be providing accessto some
functionality that exists only in a particular implementation. This can be done by
having the tag extension classtest at run-time for the existence of some
implementation dependent feature and raise a run-time error (this, of course,
makes the page not J2EE compliant).

This mechanism, together with the access to metadata information allows for
vendors to innovate within the standard.

Note —If afeatureis added to a JSP specification, and a vendor also provides
that feature through its vendor-specific mechanism, the standard mechanism, as
indicated in the JSP specification will “win”. This means that vendor-specific
mechanisms can slowly migrate into the specification as they prove their useful -
ness.

JavaServer Pages 2.0 Specification

1-172

TAG EXTENSIONS

JSP.7.5.2 Access to Vendor -Specific infor mation

If avendor wants to associate some information that is not described in the cur-
rent version of the TLD with sometag library, it can do so by inserting the informa-
tion in adocument it controls, inserting the document in the WEB-INF portion of the
Web Application where the Tag Library resides, and using the standard Servlet 2.4
mechanisms to access that information.

JSP.7.5.3 Customizinga Tag Library

A tag library can be customized at assembly and deployment time. For example,
atag library that provides access to databases may be customized with login and
password information.

Thereis no convenient place in web.xml in the Servlet 2.4 spec for customiza-
tion information A standardized mechanism is probably going to be part of aforth-
coming JSP specification, but in the meantime the suggestion isthat atag library
author place thisinformation in awell-known location at some resource in the WEB-
INF/ portion of the Web Application and accessit viathe getResource call on the
ServletContext.

JavaServer Pages 2.0 Specification

cuneren JOP.B

Tag Files

T his chapter describes the details of tag files, a JSP 2.0 facility that allows
page authors to author tag extensions using only JSP syntax. In the pagt, the ability
to encapsulate presentation logic into reusable, full-featured tag libraries was only
available to developers that had a reasonable amount of Java experience. Tag files
bring the power of reuse to the basic page author, who are not required to know
Java. When used together with JSP Fragments and Simple Tag Handlers, these con-
cepts have the ability to smplify JSP development substantially, even for developers
who do know Java.

JSP.8.1 Overview

Asof JSP version 2.0, the JSP Compiler is required to recognize tag files. A
tag file is asource file that provides away for a page author to abstract a segment
of JSP code and make it reusable via a custom action.

Tag files allow a JSP page author to create tag libraries using JSP syntax. This
means that page authors no longer need to know Java or ask someone who knows
Javato write atag extension. Even for page authors or tag library devel opers who
know Java, writing tag files is more convenient when devel oping tags that
primarily output template text.

The required file extension for atag file are .tag or .tagx. Asisthe case with
JSPfiles, the actual tag may be composed of atop file that includes other files that
contain either a complete tag or a segment of atag file. Just as the recommended
extension for a segment of a JSPfile is .jspf, the recommended extension for a
segment of atag fileis .tagf.

JavaServer Pages 2.0 Specification 1-173

1-174 TAG FILES

JSP.8.2 Syntax of Tag Files

The syntax of atag fileis similar to that of a JSP page, with the following
exceptions:

* Directives- Somedirectives are not available or have limited availability, and
some tag file specific directives are available. See Section JSP.8.5, “Tag File
Directives’ for adiscussion on tag file directives.

» The <jsp:invoke> and <jsp:doBody> standard actions can only be used in Tag
Files.

The EBNF grammar in Section JSP.1.3.10, “ JSP Syntax Grammar” describes
the syntax of tag files. The root production for atag filesis JSPTagDef.
See Section JSP.8.6 for details on tag filesin XML syntax.

JSP.8.3 Semantics of Tag Files

For each tag file in the web application, atag handler is made available to JSP
pages and other tag files. The specifics of how thisis done are left up to the Con-
tainer implementation. For example, some Containers may choose to compiletag
filesinto Javatag handlers, whereas others may decide to interpret the tag handlers.

However the Container chooses to prepare the tag handler, the following
conditions must hold true for all tag handlers defined as tag files:

» Thetag file implementation must keep a copy of the JspContext instance
passed to it by the invoking page viathe setJspContext method. Thisis called
the Invoking JSP Context.

» Thetag file implementation must create and maintain a second instance of
JspContext called a JSP Context Wrapper. If the Invoking JSP Context is an
instance of PageContext, the JSP Context Wrapper must also be an instance of
PageContext. This wrapper must be returned when getJspContext() is called.

* For each invocation to the tag, the JSP Context Wrapper must present a clean
page scope containing no initial elements. All scopes other than the page
scope must be identical to those in the Invoking JSP Context and must be
modified accordingly when updates are made to those scopes in the JSP Con-
text Wrapper. Any modifications to the page scope, however, must not affect
the Invoking JSP Context.

JavaServer Pages 2.0 Specification

Semantics of Tag Files

* For each attribute declared and specified, a page-scoped variable must be cre-
ated in the page scope of the JSP Context Wrapper. The name of the variable
must be the same as the declared attribute name. The value of the variable
must be the value of the attribute passed in during invocation. For each at-
tribute declared as optional and not specified, no page-scoped variableis cre-
ated. If the tag accepts dynamic attributes, then the names and val ues of those
dynamic attributes must be exposed to the tag file as specified in Table JSP.8-
2.

* For al intents and purposes other than for synchronizing the AT_BEGIN,
NESTED, and AT_END scripting variables, the effective JspContext for the tag
fileisthe JSP Context Wrapper. For example, the jspContext scripting variable
must point to the JSP Context Wrapper instead of the invoking JSP Context.

» Thetag handler must behave as though atag library descriptor entry was de-
fined for it, in accordance with the tag, attribute, and variable directives that
appear in the tag file trandation unit.

Itislegal for atag file to forward to a page via the <jsp:forward> standard
action. Just as for JSP pages, the forward is handled through the request
dispatcher. Upon return from the RequestDispatcher.forward method, the
generated tag handler must stop processing of the tag file and throw javax.serv-
let.jsp.SkipPageException. Similarly, if atag fileinvokes a Classic Tag Handler
which returns SKIP_PAGE from the doEndTag method, or if it invokes a Simple
Tag Handler which throws SkipPageException in the doTag method, the generated
tag handler must terminate and SkipPageException must be thrown. In either of
these two cases, the doCatch and doFinally methods must be called on enclosing
tags that implement the TryCatchFinally interface before returning. The doEndTag
methods of enclosing classic tags must not be called.

Care should be taken when invoking a classic tag handler from atag file. In
general, SimpleTag Extensions can be used in environments other than servlet
environments. However, because the Tag interface relies on PageContext, whichin
turn assumes a servlet environment, using classic tag handlersindirectly bindsthe
use of the tag file to servlet environments. Nonetheless, the JSP container must
alow such an invocation to occur. When atag file attempts to invoke a classic tag
handler (i.e. one that implements the Tag interface), it must cast the JspContext
passed to the SimpleTag into a PageContext. In the event that the class cast fails,
the invocation of the classic tag fails, and a JspException must be thrown.

JavaServer Pages 2.0 Specification

1-175

1-176 TAG FILES

JSP.8.4 Packaging Tag Files

One of the goals of tag files as atechnology isto makeit as easy to write atag
handler asit isto write a JSP. Traditionally, writing tag handlers has been a
tedious task, with alot of time spent compiling and packaging the tag handlers
and writing a TLD to provide information to tools and page authors about the
custom actions. The rules for packaging tag files are designed to make it very
simple and fast to write simple tags, while still providing as much power and
flexibility as classic tag handlers have.

JSP.8.4.1 L ocation of Tag Files

Tag extensions written in JSP using tag files can be placed in one of two
locations. Thefirst possibility isin the /META-INF/tags/ directory (or a
subdirectory of /IMETA-INF/tags/) in aJAR file installed in the /\WEB-INF/lib/
directory of the web application. Tags placed here are typically part of areusable
library of tags that can be easily dropped into any web application.

The second possibility isin the /WEB-INF/tags/ directory (or asubdirectory of
/WEB-INF/tags/) of the web application. Tags placed here are within easy reach
and require little packaging. Only fileswith a.tag or .tagx extension are
recognized by the container to be tag files.

Tag files that appear in any other location are not considered tag extensions
and must be ignored by the JSP container. For example, atag file that appearsin
the root of aweb application would be treated as content to be served.

JSP.8.4.2 Packaging in a JAR

To be accessible, tag files bundled in a JAR require a Tag Library Descriptor.
Tag files that appear in aJAR but are not defined in a TLD must be ignored by the
JSP container.

JSP 2.0 adds an additional TLD element to describe tags within atag library,
namely <tag-file>. The <tag-file> element requires <name> and <path>
subelements, which define the tag name and the full path of the tag file from the
root of the JAR, respectively. In aJAR file, the <path> element must always begin
with /META-INF/tags. The values for the other subelements of <tag-file> override
the defaults specified in the tag directive.

Note that it is possible to combine both classic tag handlers and tag handlers
implemented using tag files in the same tag library by combining the use of <tag>
and <tag-file> elements under the <taglib> element. This means that in most
instances the client is unaware of how the tag extension was implemented. Given

JavaServer Pages 2.0 Specification

Packaging Tag Files

that <tag> and <tag-file> share a namespace, atag library is considered invalid and
must be rejected by the container if a<tag-file> element has a <name> subelement
with the same content as a <name> subelement in a<tag> element. Any attempt to
use an invalid tag library must trigger atrandation error.

JSP.8.4.3 Packaging Directly in a Web Application

Tag files placed in the /WEB-INF/tags/ directory of the web application, or a
subdirectory, are made easily accessible to JSPs without the need to explicitly
write a Tag Library Descriptor. This makes it convenient for page authors to
quickly abstract reusable JSP code by simply creating a new file and placing the
code inside of it.

The JSP container must interpret the /WEB-INF/tags/ directory and each
subdirectory under it, as another implicitly defined tag library containing tag
handlers defined by the tag files that appear in that directory. There are no special
relationships between subdirectories - they are allowed simply for organizational
purposes. For example, the following web application contains three tag libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tag
/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The JSP container must generate an implicit tag library for each directory
under and including /WEB-INF/tags/. Thistag library can be imported only viathe
tagdir attribute of the taglib directive (see Section JSP.1.10.2), and has the
following hard-wired values:

« <tlib-version> for the tag library defaultsto 1.0

* <short-name> is derived from the directory name. If the directory is/WEB-
INF/tags/, the short name is simply tags. Otherwise, the full directory path
(relative to the web application) istaken, minus the /\WEB-INF/tags/ prefix.
Then, all / characters are replaced with -, which yields the short name. Note
that short names are not guaranteed to be unique (asin /WEB-INF/tags/ vVersus
IWEB-INF/tags/tags/ or /IWEB-INF/tags/a-b/ versus /WEB-INF/tags/a/b/)

* A <tag-file> element is considered to exist for each tag file in this directory,
with the following sub-elements:

JavaServer Pages 2.0 Specification

1-177

1-178

TAG FILES

- The <name> for each is the filename of the tag file, without the .tag exten-
sion.

- The <path> for each isthe path of the tag file, relative to the root of the web
application.

For the above example, the implicit Tag Library Descriptor for the /\WEB-INF/
tags/bar/baz/ directory would be:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>
<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>
</tag-file>
</taglib>

Upon deployment, the JSP container must search for and process all tag files
appearing in these directories and subdirectories. In processing atag file, the
container makes the custom actions defined in these tags available to JSP files.

Despite the existence of animplicit tag library, aTag Library Descriptor in the
web application can till create additional tags from the same tag files. Thisis
accomplished by adding a <tag-file> element with a <path> that points to the tag
file. Inthis case, the value of <path> must start with /WEB-INF/tags.

JSP.8.4.4 Packaging as Precompiled Tag Handlers

Tag files can also be compiled into Java classes and bundled as atag library.
Thisisuseful for the situation where atag library developer wishesto distribute a
binary version of the tag library without the original source. Tag library
devel opers that choose this form of packaging must use atool that produces
portable JSP code that uses only standard APIs. Containers are not required to
provide such atool.

JavaServer Pages 2.0 Specification

Tag File Directives 1-179

JSP.8.5 Tag File Directives

This section describes the directives available within tag files, which define
Simple Tag Handlers. Table JSP.8-1 outlines which directives are available in tag
files:

Table JSP.8-1 Directives available to tag files

Directive Available? Interpretation/Restrictions

page no A tag fileis not apage. Thetag directive must
be used instead. If thisdirectiveisusedina
tag file, atrandation error must result.

taglib yes Identical to JSP pages.

include yes Identical to JSP pages. Note that if the
included file contains syntax unsuitable for tag
files, atrangation error must occur.

tag yes Only applicable to tag files. An attempt to use
this directive in JSP pages will resultin a
trandation error.

attribute yes Only applicableto tag files. An attempt to use
this directive in JSP pages will resultin a
trandation error.

variable yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result ina
trangdlation error.

JSP.8.5.1 Thetag Directive

Thetag directive is similar to the page directive, but appliesto tag files instead
of JSPs. Like the page directive, atrandation unit can contain more than one
instance of the tag directive, al the attributes will apply to the complete trandation
unit (i.e. tag directives are position independent). There shall be only one occur-
rence of any attribute/value defined by this directive in a given trand ation unit,
unless the vaues for the duplicate attributes are identical for all occurrences. The
import and pageEncoding attributes are exempt from this rule and can appear multi-
ple times. Multiple uses of the import attribute are cumulative (with ordered set
union semantics). Other such multiple attribute/value (re)definitionsresult in a
fatal trangdlation error if the values do not match.

JavaServer Pages 2.0 Specification

1-180 TAG FILES

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).
Unrecognized attributes or values result in fatal trandation errors.

Examples

<%@ tag display-name="Addition”
body-content="scriptless”
dynamic-attributes="dyn”
small-icon="/WEB-INF/sample-small.jpg”
large-icon="/WEB-INF/sample-large.jpg”
description="Sample usage of tag directive” %>

Syntax

<%@ tag tag_directive_attr_list %>

tag_directive_attr_list ::=
{ display-name="display-name” }
{ body-content="scriptless|tagdependentjempty” }
{ dynamic-attributes="name” }
{ small-icon="small-icon”
{ large-icon="large-icon”
{ description="description”
{ example="example”
{ language="scriptingLanguage”
{ import="importList”
{ pageEncoding="peinfo”
{ isELIgnored="true|false”

e e e e e e

The details of the attributes are as follows;

Table JSP.8-2 Details of tag directive attributes

display-name (optional) A short name that is intended to be displayed by
tools. Defaults to the name of the tag file, without the .tag
extension.

body-content (optional) Providesinformation on the content of the body of
thistag. Can be either empty, tagdependent, or scriptless. A
tranglation error will result if JSP or any other valueis used.
Defaults to scriptless.

JavaServer Pages 2.0 Specification

Tag File Directives

1-181

Table JSP.8-2 Details of tag directive attributes

dynamic-attributes

small-icon

large-icon

description

example

language

import

(optional) The presence of this attribute indicates thistag
supports additional attributes with dynamic names. If
present, the generated tag handler must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface, and the
container must treat thetag asif its corresponding TLD entry
contained <dynamic-attributes>true</dynamic-attributes>.
Theimplementation must not reject any attribute names. The
value identifies a page scoped attribute in which to place a
Map containing the names and values of the dynamic
attributes passed during this invocation. The Map must
contain each dynamic attribute name as the key and the
dynamic attribute value as the corresponding value. Only
dynamic attributes with no uri are to be present in the Map;
al other dynamic attributes are ignored. A trandation error
will result if there is atag directive with adynamic-attributes
attribute equal to the value of aname-given attribute of avari-
able directive or equal to the value of aname attribute of an
attribute directive in this trandlation unit.

(optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing asmall icon
that can be used by tools. Defaults to no small icon.

(optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing alarge icon
that can be used by tools. Defaults to no large icon.

(optional) Defines an arbitrary string that describes thistag.
Defaults to no description.

(optional) Defines an arbitrary string that presents an
informal description of an example of a use of this action.
Defaults to no example.

(optional) Carries the same syntax and semantics of the
language attribute of the page directive.

(optional) Carries the same syntax and semantics of the
import attribute of the page directive.

JavaServer Pages 2.0 Specification

1-182

TAG FILES

Table JSP.8-2 Details of tag directive attributes

pageEncoding (optional) Carries the same syntax and semantics of the pag-
eEncoding attribute in the page directive. However, thereis
no corresponding global configuration element in web.xml.
The pageEncoding attribute cannot be used in tag filesin
XML syntax.

isELIgnored (optional) Carries the same syntax and semantics of the isg-
Lignored attribute of the page directive. However, thereisno
corresponding global configuration element in web.xml.

JSP.8.5.2 The attribute Directive

The attribute directiveisanalogousto the <attribute> element in the Tag Library
Descriptor, and allows for the declaration of custom action attributes.

Examples

<%@ attribute name="X" required="true” fragment="false”
rtexprvalue="false” type="java.lang.Integer”
description="The first operand” %>

<%@ attribute name="y” type="java.lang.Integer” %>

<%@ attribute name="prompt” fragment="true” %>

Syntax

<%@ attribute attribute_directive_attr_list %>

attribute_directive_attr_list ::=
name="attribute-name”
{ required="true|false”
{ fragment="true|false”
{ rtexprvalue="true|false”
{ type="type”
{ description="description”

[R W S S R)

JavaServer Pages 2.0 Specification

Tag File Directives 1-183

The details of the attributes are as follows:

Table JSP.8-3 Details of attribute directive attributes

name (required) The unigue name of the attribute being declared.
A trandation error must result if more than one attribute
directive appears in the same translation unit with the same
name. A trandation error will result if there is an attribute
directive with aname attribute equal to the value of the
name-given attribute of avariable directive or the dynamic-
attributes attribute of atag directive in this trandation unit.

required (optional) Whether this attribute isrequired (true) or optional
(false). Defaults to false if not specified.

fragment (optional) Whether this attribute is afragment to be
evaluated by the tag handler (true) or anormal attribute to be
evaluated by the container prior to being passed to the tag
handler. If this attribute is true, the type attribute is fixed at
javax.servlet.jsp.tagext.JspFragment and a trandation error
will result if the type attribute is specified. Also, if this
attribute istrue, the rtexprvalue attributeisfixed at true and a
trandation error will result if the rtexprvalue attributeis
specified. Defaults to false.

rtexprvalue (optional) Whether the attribute’s value may be dynamically
calculated at runtime by a scriptlet expression. Unlike the
corresponding TLD element, this attribute defaults to true.

type (optional) The runtime type of the attribute’s value. Defaults
to java.lang.String if not specified. It isatranslation error to
specify a primitive type.

description (optional) Description of the attribute. Defaults to no
description.

JSP.8.5.3 Thevariable Directive

The variable directive is anaogous to the <variable> element in the Tag Library
descriptor, and defines the details of a variable exposed by the tag handler to the
caling page.

See Section JSP.7.1.4.7, “Actions Defining Scripting Variables’ for more
details.

JavaServer Pages 2.0 Specification

1-184

Examples

<%@ variable name-given="sum”
variable-class="java.lang.Integer”
scope="NESTED”
declare="true”
description="The sum of the two operands” %>

<%@ variable name-given="opl”
variable-class="java.lang.Integer”

description="The first operand” %>

<%@ variable name-from-attribute="var” alias="result” %>

Syntax

<%@ variable variable_directive_attr_list %>

variable_directive_attr_list ::=
(name-given="output-name”

| (name-from-attribute="attr-name”

alias="local-name”

)
)

{ variable-class="output-type”

{ declare="true|false”

{ scope="AT_BEGIN|AT_END|NESTED”
{ description="description”

The details of the attributes are as follows:

Table JSP.8-4 Details of variable directive attributes

e e

TAG FILES

name-given

Defines a scripting variable to be defined in the page

invoking this tag. Either the name-given attribute or the
name-from-attribute attribute must be specified. Specifying

neither or both will result in atrandlation error. A

trandlation error will result if two variable directives have
the same name-given. A trandation error will result if there
isavariable directive with aname-given attribute equal to
the value of the name attribute of an attribute directive or
the dynamic-attributes attribute of atag directivein this

tranglation unit.

JavaServer Pages 2.0 Specification

Tag File Directives 1-185

Table JSP.8-4 Details of variable directive attributes

name-from-attribute Defines a scripting variable to be defined in the page

alias

variable-class

declare

scope

description

invoking this tag. The specified nameis the name of an
attribute whose (trand ation-time) value at of the start of the
tag invocation will give the name of the variable. A
trandlation error will result if there is no attribute directive
with aname attribute equal to the value of this attribute that
is of typejava.lang.String, iS required and not an rtex-
prvalue. Either the name-given attribute or the name-from-
attribute attribute must be specified. Specifying neither or
both will result in atranglation error. A trandation error
will result if two variable directives have the same name-
from-attribute.

Defines alocally scoped attribute to hold the value of this
variable. The container will synchronize thisvalue with the
variable whose name is given in name-from-attribute.
Required when name-from-attribute is specified. A
tranglation error must occur if used without name-from-
attribute. A translation error must occur if the value of alias
isthe same as the value of aname attribute of an attribute
directive or the name-given attribute of avariable directive
in the same translation unit.

(optional) The name of the class of the variable. The
default isjava.lang.String.

(optional) Whether the variable is declared or not in the
calling pageltag file, after thistag invocation. true isthe
default.

(optional) The scope of the scripting variable defined. Can
be either AT_BEGIN, AT_END, or NESTED. Defaultsto
NESTED.

(optional) An optional description of thisvariable. Defaults
to no description.

JavaServer Pages 2.0 Specification

1-186

TAG FILES

JSP.8.6 Tag Filesin XML Syntax

Tag files can be authored using the XML syntax, as described in JSP Docu-
ments, Chapter JSP.6. This section describes the few distinctions from the case of
JSP documents.

Tag filesin XML syntax must have the extension .tagx. All fileswith
extension .tagx according to the rulesin Section JSP.8.4.1 aretag filesin XML
syntax. Conversdly, fileswith extension .tag are not in XML syntax.

Thejsp:root element can, but needs not, appear in tag filesin XML syntax. A
jsp:root element cannot appear in atag file in JSP syntax.

Asindicated in Section JSP.5.16, “ <jsp:output>", the default for tag files, in
either syntax, isnot to generate the xml declaration. The element jsp:output can be
used to change that default for tag filesin XML syntax.

Finally, thetag directivein atag filein XML syntax cannot include a pageEn-
coding attribute; the encoding is inferred using the conventions for XML
documents. Using the pageEncoding attribute shall result in atrandation-time
error.

JSP.8.7 XML View of a Tag File

Similar to JSP pages, tag files have an equivalent XML document, the XML
view of atag file, that is exposed to the trand ation phase for validation. During the
trandation phase for atag file, atag XML view is created and passed to al TLVs
declared in dl tag libraries declared in the tag file.

The XML view of atag fileisidentical to the XML view of aJSP, except that
there are additional XML elements defined to handle tag file specific features. The
XML view of atag fileis obtained in the same way that the XML view of a JSP
page is obtained (see Chapter JSP.10).

JSP.8.8 Implicit Objects

Tag library devel opers writing tag files have access to certain implicit objects
that are always available for use within scriptlets and expressions through
scripting variables that are declared implicitly at the beginning of the tag handler
implementation. All scripting languages are required to provide access to these
objects.

JavaServer Pages 2.0 Specification

Implicit Objects

Each implicit object has a class or interface type defined in a core Java
technology or Java Serviet APl package, as shown in Table JSP.8-5.

Table JSP.8-5 Implicit Objects Available in Tag Files

Variable
Name

Type

Semantics & Scope

request

response

jspContext

session

application

out

config

protocol dependent subtype of:
javax.servlet.ServletRequest

eg:
javax.servlet.http.HttpServletRequest

protocol dependent subtype of:
javax.servlet.ServletResponse, €.g:
javax.servlet.http.HttpServletResponse

javax.servlet.jsp.JspContext

javax.servlet.http.HttpSession

javax.servlet.ServletContext

javax.servlet.jsp.JspWriter

javax.servlet.ServletConfig

The request triggering
the service invocation.
request SCOpe.

The response to the
request.
page SCOpe.

The JspContext for this
tag file.
page scope.

The session object
created for therequesting
client (if any).
Thisvariableisonly
valid for HTTP
protocols.

session Scope

The servlet context
obtained from the servlet
configuration object
(asinthe call getServlet-
Config().

getContext())

application scope

An object that writesinto
the output stream.
page scope

The ServletConfig for
this JSP page
page Scope

JavaServer Pages 2.0 Specification

1-187

1-188

TAG FILES

Object names with prefixesjsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

JSP.8.9 Variable Synchronization

Just asisthe casefor dl tag handlers, atag file is able to communicate with its
calling page viavariables. As mentioned earlier, in tag files, variables are declared
using the variable directive. Though the scopes of variables are similar to thosein
classic tag handlers, the semantics are dightly different. Theintent isto be ableto
emulate IN and OUT parameters using attributes and variables, which appear as
page-scoped attributes local to the tag file, and are synchronized with the calling
page's JspContext a various points.

The name-from-attribute and alias attributes of the variable directive can be
used to allow the caller to customize the name of the variable in the calling page
while referring to a constant name in the tag file. When using these attributes, the
name of the variable in the calling page is derived from the value of name-from-
attribute at the time the tag was called. The name of the corresponding variablein
the tag file isthe value of alias.

 IN parameters - Use attributes. For each attribute, a page-scoped attribute is
made available in the JspContext of the tag file. The page-scoped attribute is
initialized to the value of the attribute when the tag is called. No further syn-
chronization is performed.

e OUT parameters - Use variables with scope AT_BEGIN or AT_END. For each
AT_BEGIN or AT_END variable, a page-scoped attribute is made available in
the JspContext of thetag file. The scoped attribute is not initialized. Synchro-
nization is performed at the end of thetag for AT_BEGIN and AT_END and
also before the invocation of afragment for AT_BEGIN. See Table JSP.8-6 for
details.

* Nested parameters - Use variables with scope AT_BEGIN or NESTED. For
each AT_BEGIN or NESTED variable, a page-scoped attribute is made avail-
ablein the JspContext of the tag file. The scoped attribute is not initialized.
Synchronization is performed before each fragment invocation for AT_BEGIN
and NESTED, and also after the end of the tag for AT_BEGIN. See Table JSP.8-
6 for details.

JavaServer Pages 2.0 Specification

Variable Synchronization 1-189

JSP.8.9.1 Synchronization Points

The JSP container is required to generate code to handle the synchronization
of each declared variable. The details of how and when each variableis
synchronized varies by the variable’s scope, as per Table JSP.8-6.

Table JSP.8-6 Variable synchronization behavior

AT_BEGIN NESTED AT_END

Beginning of tag file do nothing save do nothing
Before any fragment tag - page tag - page do nothing
After any fragment do nothing do nothing do nothing
End of tag file tag —» page restore tag —» page

Thefollowing list describes what each synchronization action means. If
name-given is used, the name of the variable in the calling page (referred to as P)
and the name of the variable in the tag file (referred to as T) are the same and are
equal to the value of name-given. If name-from-attribute is used, the name of P is
equal to the value of the attribute (at the time the page was called) specified by the
value of name-from-attribute and the name of T is equal to the value of the alias
attribute.

» tag - page - For thisvariable, if T existsinthetagfile, create/update P inthe
calling page. If aT does not exist inthe tag file, and P does exist in the calling
page, P isremoved from the calling page' s page scope. If the declare attribute
for thisvariableis set to true, a corresponding scripting variableis declared in
the calling page or tag file, as with any other tag handler. If this scripting vari-
able would not be accessiblein the context in which it is defined, the container
need not declare the scripting variable (for example in a scriptless body).

» save - For thisvariable, save the value of P, for later restoration. |f P did not
exist, remember that fact.

* restore - For this variable, restore the value of P in the calling page, from the
value saved earlier. If P did not exist before, ensure it does not exist now.

All variable synchronization and restoration that occurs at the end of atag file
must occur regardless of whether an exception is thrown inside the tag file. All
variable synchronization that occurs after the invocation of afragment must occur
regardless of whether an exception occured while invoking the fragment.

JavaServer Pages 2.0 Specification

1-190

TAG FILES

JSP.8.9.2 Synchronization Examples

The following examples help illustrate how variable synchronization works
between atag file and its calling page.

JSP.8.9.2.1 Example of AT_BEGIN

Inthisexample, the AT_BEGIN scopeisused to passavariableto the tag's body,
and make it available to the calling page at the end of the tag invocation.

<%-- page.jsp --%>
<%@ taglib prefix="c” uri="http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>
${x} <%-- (x == 2) --%>
<c:set var="x" value="3"/>
</my:example>
${x} <%-- (X == 4) --%>

<%-- IWEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="AT_BEGIN" %>

<%@ taglib prefix="c” uri="http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>

<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

JSP.8.9.2.2 Example of AT_BEGIN and name-from-attribute

Like the previous example, in this example the AT_BEGIN scopeis used to pass
avariableto thetag'sbody, and makeit available to the calling page at the end of the
tag invocation. The name of the attribute is customized via name-from-attribute.

JavaServer Pages 2.0 Specification

Variable Synchronization 1-191

<%-- page.jsp --%>
<%@ taglib prefix="c” uri="http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example var="x">

${x} <%-- (x == 2) --%>

${result} <%-- (result == null) --%>

<c:set var="x" value="3"/>

<c:set var="result” value="invisible"/>
</my:example>
${x} <%-- (x == 4) --%>
${result} <%-- (result == ‘invisible’) --%>

<%-- /WEB-INF/tags/example.tag --%>

<%@ attribute name="var” required="true” rtexprvalue="false”%>
<%@ variable alias="result” name-from-attribute="var” scope="AT_BEGIN” %>
<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
${x} <%-- (x == null) --%>

${result} <%-- (result == null) --%>

<c:set var="x" value="ignored"/>

<c:set var="result” value="2"/>

<jsp:doBody/>

${x} <%-- (x == ‘ignored’) --%>

${result} <%-- (result == 2) --%>

<c:set var="x" value="still_ignored”/>

<c:set var="result” value="4"/>

JSP.8.9.2.3 Example of NESTED

In this example, the NESTED scopeis used to make a private variable available
to the calling page. The original value is restored when the tag is done.

<%-- page.jsp --%>
<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>
${x} <%-- (x == 2) --%>
<c:set var="x" value="3"/>
</my:example>
${x} <%-- (x == 1) --%>

JavaServer Pages 2.0 Specification

1-192 TAG FILES

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="NESTED” %>

<%@ taglib prefix="c” uri="http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>

<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

JSP.8.9.24 Example of AT_END

In this example, the AT _END scopeis used to return avalue to the page. The
body of thetag is not affected.

<%-- page.jsp --%>
<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>
${x} <%-- (x == 1) --%>
<c:set var="x" value="3"/>
</my:example>
${x} <%-- (x == 4) --%>

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="AT_END” %>

<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>

<jsp:doBody/>

${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

JSP.8.9.25 Example of Removing Parameters

This exampleillustrates how the tag file can remove objects from the page
scope of the calling page during synchronization.

JavaServer Pages 2.0 Specification

Variable Synchronization 1-193

<%-- page.jsp --%>
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<%@ taglib prefix="c” uri="http://java.sun.com/jsp/jstl/core” %>
<c:set var="x" value="2"/>
${x}
<my:tagl>
‘${x}’
</my:tagl>
${x}

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="NESTED” %>

<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
<c:set var="x" value="1"/>

<jsp:doBody/>

<c:remove var="x"/>

<jsp:doBody/>

The expected output of thisexampleis: 21 ' 2

JavaServer Pages 2.0 Specification

1-194 TAG FILES

JavaServer Pages 2.0 Specification

cuneren JOP.9

Scripti nd

T his chapter describes the details of the Scripting Elements when the lan-
guage directive value isjava.

The scripting language is based on the Java programming language (as
specified by “ The Java Language Specification”), but note that there is no valid
JSP page, or a subset of a page, that isavalid Java program.

The following sections describe the details of the relationship between the
scripting declarations, scriptlets, and scripting expressions, and the Java
programming language. The description isin terms of the structure of the JSP
page implementation class. A JSP Container need not generate the JSP page
implementation class, but it must behave asif one exists.

JSP.9.1 Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting
language used in the page. Thisis especialy complex since scriptlets are language
fragments, not complete language statements.

JSP.9.1.1 Valid JSP Page

A JSP pageisvalid for a Java Platform if and only if the JSP page implementa-
tion class defined by Table JSP.9-1 (after applying all include directives), together
with any other classes defined by the JSP container, isavalid program for the given
Java Platform, and if it passes the validation methods for all the tag libraries associ-
ated with the JSP page.

JavaServer Pages 2.0 Specification

1-195

1-196

SCRIPTING

JSP.9.1.2 Reserved Names

Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in
any combination of upper and lower case, for the JSP specification. Names of this
form that are not defined in this specification are reserved by Sun for future
expansion.

JSP.9.1.3 Implementation Flexibility

The transformations described in this chapter need not be performed literaly.
An implementation may implement things differently to provide better perfor-
mance, lower memory footprint, or other implementation attributes.

Table JSP.9-1 Structure of the JavaProgramming Language Class

Optional imports import namel
clause asindicated
viajsp directive

SuperClass iseither class _jspXXX extends SuperClass
selected by the JSP

container or by the

JSP author viathejsp

directive.

Name of class

(UjspXXX) is

implementation

dependent.

Start of the body of a {
JSP page
implementation class

(1) Declaration /I declarations...
Section
signature for public void _jspService(<ServletRequestSubtype>

generated method request,
<ServletResponseSubtype> response)
throws ServletException, IOException {

JavaServer Pages 2.0 Specification

Declarations Section 1-197

Table JSP.9-1 Structure of the JavaProgramming Language Class

(2) Implicit Objects // code that defines and initializes request, response, page,
Section pageContext etc.

(3) Main Section /Il code that defines request/response mapping
closeof _jspService }

method

close of _jspXXX }

JSP.9.2 Declar ations Section

The declarations section corresponds to the declaration elements.
The contents of this section is determined by concatenating all the
declarations in the page in the order in which they appear.

JSP.9.3 Initialization Section

This section definesand initializesthe implicit objects available to the JSP page.
See Section JSP1.8.3, “Implicit Objects”.

JSP.9.4 Main Section

This section provides the main mapping between arequest and aresponse
object.

The content of code segment 2 is determined from scriptlets, expressions, and
the text body of the JSP page. The elements are processed sequentially in the
order in which they appear in the page. The trandation for each oneis determined
asindicated below, and its trandation is inserted into this section. The trandation
depends on the element type:

JSP.9.4.1 Template Data

Template data is transformed into code that will place the template datainto the
stream named by the implicit variable out when the code is executed. White spaceis
preserved.

JavaServer Pages 2.0 Specification

1-198

SCRIPTING

Ignoring quotation issues and performance issues, this corresponds to a
statement of the form:

Original Equivalent Text
template out.print(template)

JSP.9.4.2 Scriptlets

A scriptlet istransformed into its code fragment.:

Original Equivalent Text
<% fragment %> fragment

JSP.9.4.3 Expressions

An expression is transformed into a Java statement to insert the value of the
expression, converted to java.lang.String if needed, into the stream named by the
implicit variable out. No additional newlines or spaceisincluded.

Ignoring quotation and performance issues, this corresponds to a statement of
the form:

Original Equivalent Text
<%= expression %> out.print(expression)

JSP.9.4.4 Actions

An action defining one or more objectsis transformed into one or more variable
declarations for those objects, together with code that initializes the variables. Their
visibility is affected by other constructs, for example scriptlets.

The semantics of the action type determines the names of the variables
(usually the name of anid attribute, if present) and their type. The only standard
action in the JSP specification that defines objectsisthe jsp:useBean action. The
name of the variable introduced is the name of theid attribute and its type isthe
type of the class attribute.

Original Equivalent Text
<x:tag> declare AT_BEGIN variables
foo {
</x:tag> declare NESTED variables
transformation of foo
}

declare AT_END variables
JavaServer Pages 2.0 Specification

Main Section 1-199

Note that the value of the scope attribute does not affect the visibility of the
variables within the generated program. It affects where and thus for how long
there will be additional referencesto the object denoted by the variable.

JavaServer Pages 2.0 Specification

1-200 SCRIPTING

JavaServer Pages 2.0 Specification

cunerer JOP. 10

XML View

T his chapter provides details on the XML view of a JSP page and tag files.

The XML views are used to enable validation of JSP pages and tag files..

JSP.10.1 XML View of aJSP Document, JSP Pageor Tag File

This section describes the XML view of a JSP page or tag file: the mapping

between a JSP page, JSP document or tag file, and an XML document describing it.

JSP.10.1.1 JSP Documentsand Tag Filesin XML Syntax

The XML view of aJSP document or of atag file written in XML syntax is

very close to the original JSP page. Only five transformations are performed:

Expand al include directives into the JSP content they include. See
Section JSP.1.10.5 for the semantics of mixing XML and standard syntax con-
tent.

Add ajsp:root element as the root element if the JSP document or tag filein
XML syntax does not haveit.

Set the value of the pageEncoding attribute of the page directive to "UTF-8".
The page directive and the pageEncoding attribute are added if they don’'t ex-
ist already.

Set the value of the contentType attribute of the page directive to the value that
the container will passto ServletResponse.setContentType(), determined as
described in Section JSP.4.2, “ Response Character Encoding”. The page di-
rective and the contentType attribute are added if they don’t exist already.

Add the jsp:id attribute (see Section JSP.10.1.13).

JavaServer Pages 2.0 Specification

1-201

1-202

XML VIEW

JSP.10.1.2 JSP Pagesor Tag Filesin JSP Syntax

The XML view of a JSP page or tag file written in standard syntax is defined
by the following transformation:

» Expand al include directives into the JSP content they include. See
Section JSP.1.10.5 for the semantics of mixing XML and standard syntax con-

tent.

» Add ajsp:root element as the root, with appropriate xmins:jsp attribute, and
convert the taglib directive into xmins: attributes of the jsp:root element.

» Convert declarations, scriptlets, and expressionsinto valid XML elements as
described in Section JSP.6.3.2 and the following sections.

» Convert request-time attribute expressions as in Section JSP.10.1.11.

» Convert JSP quotations to XML quotations.

» Create jsp:text elements for all template text.
» Add thejsp:id attribute (see Section JSP.10.1.13).

Note that the XML view of a JSP page or tag file has no DOCTYPE
information; see Section JSP.10.2.
A quick overview of the transformation is shown in Table JSP.10-1:

TableJSP.10-1 XML View Transfor mations

JSP element

XML view

<%-- comment --%>
<%@ page ... %>

<%@ taglib ... %>

<%@ include ... %>

removed
<jsp:directive.page ... />. Add jsp:id

jsp:root element is annotated with namespace
information. Add jsp:id.

expanded in place

<%! ... %>
<% ... %>
<%= ... %>

<jsp:declaration> ... </jsp:declaration>. Add jsp:id.
<jsp:scriptlet> ... </jsp:scriptlet>. Add jsp:id.

<jsp:expression> ... </jsp:expression>. Add jsp:id.

Standard action

Replace with XML syntax (adjust request-time
expressions; add jsp:id)

JavaServer Pages 2.0 Specification

XML View of a JSP Document, JSP Page or Tag File 1-203

TableJSP.10-1 XML View Transfor mations

JSP element XML view

Custom action Asis (adjust request-time expressions; add jsp:id)
template Replace with jsp:text. Add jsp:id.

<%@ tag ... %> <jsp:directive.tag ... />. Add jsp:id. [tag files only]

<%@ attribute ... %> <jsp:directive.attribute ... />. Add jsp:id. [tag files only]

<%@ variable ... %> <jsp:directive.variable ... />. Add jsp:id. [tag files only]

In more detail;

JSP.10.1.3 JSP Comments

JSP comments (of the form <%-- comment --%>) are not passed through to the
XML view of a JSP page.

JSP.10.1.4 The page Directive

A page directive of the form:

<%@ page { attr="value” }* %>
istrandated into an element of the form:
<jsp:directive.page { attr="value” }* />

The value of the pageEncoding attribute is set to "UTF-8". The value of the
contentType attribute is set to the value that the container will pass to
ServletResponse.setContentType(), determined as described in Section JSP.4.2,
“Response Character Encoding”. The page directive and both attributes are added
if they don't exist already.

JSP.10.1.5 Thetaglib Directive
A taglib directive of the form

<%@ taglib uri="uriValue” prefix="prefix” %>

JavaServer Pages 2.0 Specification

1-204

XML VIEW

istrandated into an xmins:prefix attribute on the root of the JSP document, with
avaue that depends on urivalue. If urivalue isarelative path, then the valueused is
urn:jsptld:uriValue; otherwise, the urivalue isused directly.

A taglib directive of the form
<%@ taglib tagdir="tagDirValue” prefix="prefix” %>

istrandated into an xmins:prefix attribute on the root of the JSP document, with
avaue of the form urn:jsptagdir:tagDirValue.

JSP.10.1.6 Theinclude Directive

An include directive of the form
<%@ include file="value” %>

is expanded into the JSP content indicated by value. Thisis doneto alow for
validation of the page.

JSP.10.1.7 Declar ations

Declarations are trand ated into a jsp:declaration element. For example, the sec-
ond example from Section JSP1.12.1:

<%! public String f(int i) { if (i<3) return(*...”); ... } %>
istrandated into the following.

<jsp:declaration> <!/[CDATA[public String f(int i) { if (i<3) return(“...”); }]]> </
jsp:declaration>

Alternatively, we could use an < and instead say:

<jsp:declaration> public String f(int i) { if (i<3) return(“...”); } </jsp:declaration>

JSP.10.1.8 Scriptlets

Scriptlets are trandated into ajsp:scriptlet element. In the XML document cor-
responding to JSP pages, directives are represented using the syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

JavaServer Pages 2.0 Specification

XML View of aJSP Document, JSP Page or Tag File

JSP.10.1.9 Expressions

In the XML document corresponding to JSP pages, directives are represented
using the jsp:expression element:

<jsp:expression> expression goes here </jsp:expression>

JSP.10.1.10 Standard and Custom Actions

The syntax for both standard and action elementsis based on XML. Thetrans-
formations needed are due to quoting conventions and the syntax of request-time
attribute expressions.

JSP.10.1.11 Request-Time Attribute Expressions

Request-time attribute expressions are of the form <%= expression %>.
Although this syntax is consistent with the syntax used elsewherein aJSP page, it is
not alegal XML syntax. The XML mapping for these expressionsisinto values of
the form %= expression %, where the JSP specification quoting convention has been
converted to the XML quoting convention.

Request-time attribute values can also be specified using EL expressions of
the form ${expression}. Expressions of thisform are represented verbatim in the
XML view.

The XML view of an escaped EL expression can be obtained as follows:

» The XML view of an unescaped expression ${foo} is ${foo}.
e The XML view of an escaped expression \${foo} is\${foo}.

* For each escaped \ preceeding an unescaped expression ${foo}, a ${'\'} must be
generated inthe XML view, and neighboring generated ${\\'} expressions must
be combined.

Table JSP.10-2 illustrates these rules. Assume the EL expression ${foo}
evaluates to [bar] and that EL is enabled for this trandation unit.

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result
${foo} ${foo} [bar]
\${foo} \${foo} ${foo}

JavaServer Pages 2.0 Specification

1-205

1-206

XML VIEW

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result
\\${foo} ${'\V'}${foo} \[bar]
\\${foo} \\${foo} \${foo}
\W${foo} ${"\\Wis{foo} \\[bar]
\W\${foo} \\${foo} \${foo}
W\\${foo} ${\WW\${foo} \W\[bar]
JSP.10.1.12 Template Text and XML Elements

All text that is uninterpreted by the JSP trand ator is converted into the body for
ajsp:text element. As aconsequence no XML elements of the form described in
Section JSP6.3.9, “ Template Content” will appear in the XML view of a JSP page
written in JSP syntax.

Because \\ is not an escape sequence within template text in the standard
syntax, no special transformation needs to be done to obtain the XML view of an
escaped EL expression that appears in template text.

Table JSP.10-3 illustrates how the XML view of an escaped EL expression is
obtained. Assume the EL expression ${foo} evaluates to [bar] and that EL is
enabled for thistranslation unit.

Table JSP.10-3 XML View of an Escaped EL Expression in Template Text

Attribute Value XML View Result
${foo} ${foo} [bar]
\${foo} \${foo} ${foo}
\\${foo} \\${foo} \${foo}
\\${foo} \\${foo} \\${foo}

JavaServer Pages 2.0 Specification

XML View of a JSP Document, JSP Page or Tag File 1-207

JSP.10.1.13 Thejsp:id Attribute

A JSP container must support ajsp:id attribute. This attribute can only be
present in the XML view of a JSP page and can be used to improve the quality of
trandation time error messages.

The XML view of any JSP page will have an additional jsp:id attribute added
to all XML elements. This attribute is given a value that is unique over all
eementsin the XML view. The prefix for theid attribute need not be "jsp" but it
must map to the namespace http://java.sun.com/JSP/Page. In the case where the
page author has redefined the jsp prefix, an aternative prefix must be used by the
container. See Chapter JSP.13 for more details.

JSP.10.1.14 Thetag Directive
Thetag directive is applicableto tag files only. A tag directive of the form:

<%@ tag { attr="value” }* %>
istrandated into an element of the form:
<jsp:directive.tag { attr="value” }* />

The value of the pageEncoding attributeis set to "UTF-8". A tag directive and
the pageEncoding attribute are added if they don't exist already.

JSP.10.1.15 Theattribute Directive

Theattribute directive is applicableto tag files only. An attribute directive of the
form:

<%@ attribute { attr="value” }* %>
istrandated into an element of the form:

<jsp:directive.attribute { attr="value” }* />

JSP.10.1.16 Thevariable Directive

The variable directive is applicable to tag files only. A variable directive of the
form:

<%@ variable { attr="value” }* %>

JavaServer Pages 2.0 Specification

1-208

XML VIEW

istrandated into an e ement of the form:

<jsp:directive.variable { attr="value” }* />

JSP.10.2 Validatingan XML View of a JSP page

The XML view of a JSP page is a namespace-aware document and it cannot be
validated against aDTD except in the most simple cases. To reduce confusion and
possible unintended performance consequences, the XML view of a JSP page will
not include aDOCTYPE.

There are several mechanisms that are aware of hamespaces that can be used
to do validation of XML views of JSP pages. The most popular mechanism isthe
W3C XML Schema language, but others are also suited, including some very
simple onesthat may check, for example, that only some elements are being used,
or, inversely, that they are not used. The TagLibraryValidator for atag library
permits encapsulating this knowledge with atag library.

The TagLibraryValidator acts on the XML view of the JSP page. If the page
was authored in JSP syntax, that view does not provide any detail on template data
(all being grouped inside jsp:text elements), but fine detail can be described when
using JSP documents'.

JSP.10.3 Examples

This section presents various examples of XML Views. The first shows a JSP
pagein XML syntax that includes XML fragments. The second showsa JSP pagein
JSP syntax and its mapping to XML syntax. The three following examplesillustrate
the semantics of cross-syntax trand ation-time includes and the effect on the XML
View.

JSP.10.3.1 A JSP document

Thisisan example of avery simple JSP document that has some template XML
elements. This particular example describes atable that is a collection of 3 rows,
with numeric values 1, 2, 3. The JSP Standard Tag Library is being used:

- Similarly, when applying an XSLT transformation to a JSP document,
XML fragments will be plainly visible, while the content of jsp:text ele-
ments will not

JavaServer Pages 2.0 Specification

Examp| es 1-209

<?xml version="1.0"?>
<table>
<c:forEach
xmins:c="http://java.sun.com/jsp/jstl/core”
var="counter" begin="1" end="3">
<row>${counter}</row>
</c:forEach>
</table>

JSP.10.3.2 A JSP page and its corresponding XML View

Here is an example of mapping between JSP and XML syntax.
For this JSP page:

<html>
<title>positiveTagLib</title>
<body>

<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">
Positive Test taglib directive </eg:test>
</body>

</html>

The XML View of the previous pageis:

JavaServer Pages 2.0 Specification

1-210

XML VIEW

<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page"
xmins:eg="http://java.apache.org/tomcat/examples-taglib"
xmins:test="urn:jsptld:/tomcat/taglib”
xmlins:temp="urn:jsptld:/WEB-INF/tlds/my.tld"
version="2.0">

<jsp:text><![CDATA[<htmI>
<title>positiveTagLib</title>
<body>

1]></jsp:text>

<eg:test toBrowser="true" att1="Working">
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>

<jsp:text><![CDATA[

</body>

</html>

1></jsp:text>

</jsp:root>

JSP.10.3.3 Clearing Out Default Namespace on Include

Thisexampleillustrates the need to clear out the default namespace when doing

atrandation-time include of a JSP document:

<I-- a.jspx -->
<elementA>
<tagB xmiIns="http://namespacel">
<jsp:directive.include file="b.jspx" />
</tagB>
</elementA>

<l-- b.jspx -->
<elementC />

The resulting XML View for these two JSP documentsis:

JavaServer Pages 2.0 Specification

Examples

<jsp:root>
<elementA>
<tagB xmiIns="http://namespacel">
<elementC />
</tagB>
</elementA>
</jsp:root>

JSP.10.3.4 Taglib Direcive Addsto Global Namespace

Thisexampleillustrates the effect of the taglib directive on the XML View.
Notice how the taglib directive dways affects the <jsp:root> element, independent
of whereit is encountered.

<!I-- c.jspx -->
<elementD>
<jsp:directive.include file="d.jsp" />
<jsp:directive.include file="e.jsp" />
</elementD>

<%-- d.jsp --%>
<%@ taglib prefix="x" uri="http://namespace2" %>
<x:tagE />

<%-- e.jsp --%>
<x:tagE />

Theresulting XML View of these documents and pagesis:

<jsp:root xmIns:x="http://namespace2">
<elementD>
<x:tagk />
<x:tagk />
</elementD>
</jsp:root>

JSP.10.3.5 Collective Application of Inclusion Semantics

This example illustrates how the various trand ation-time include semantics are
collectively applied:

JavaServer Pages 2.0 Specification

1-211

1-212

XML VIEW

<%-- f.jsp --%>
<%@ taglib prefix="m" uri="http://namespace3" %>
<%@ include file="g.jspx" %>

<!-- g.jspx -->
<tagF xmlIns="http://namespace4" />
<y:tagG xmlns:y="http://namespace5">

<tagH />
<jsp:directive.include file="i.jspx" />
</y:tagG>
<jsp:directive.include file="h.jsp" />
<tagl />
</tagF>

<%-- h.jsp --%>

<%@ taglib prefix="n" uri="http://namespace6" %>
<m:tagJd />

<n:tagK />

<I--i.jspx -->
<jsp:root>
<y:tagL xmins:y="http://namespace7">
<elementM />
<jsp:directive.include file="h.jsp" />
<ly:tagL>
</jsp:root>

Theresulting XML View of these documents and pagesis:

JavaServer Pages 2.0 Specification

Examples

<jsp:root xmins:m="http://namespace3"
xmlns:n="http://namespace6">
<tagF xmlIns="http://namespace4">
<y:tagG xmins:y="http://namespace5">
<tagH />
<y:tagL xmIns="" xmIns:y="http://namespace7">
<elementM />
<m:tagd />
<n:tagK />
<ly:tagL>
<ly:tagG>
<m:tagJd />
<n:tagK />
<tagl />
</tagF>
</jsp:root>

JavaServer Pages 2.0 Specification

1-213

1-214 XML VIEW

JavaServer Pages 2.0 Specification

Part 11

T he next chapters provide detail specification information on some portions
of the JSP specification that are intended for JSP Container Vendors, JSP Page
authors, and JSP Tag Library authors.

The chapters are normative.

The chapters are

JSP Container
Core API

Tag Extension API

Expression Language API

JavaServer Pages 2.0 Specification

2-1

JavaServer Pages 2.0 Specification

cineren JOP. 11

JSP Container

T his chapter describes the contracts between a JSP container and a JSP page,
including the precompilation protocol and debugging support requirements.

Theinformation in this chapter isindependent of the Scripting Language used
in the JSP page. Chapter JSP.9 describes information specific to when the lan-
guage attribute of the page directive hasjava asitsvaue.).

JSP page implementation classes should use the JspFactory and PageContext
classes to take advantage of platform-specific implementations.

JSP.11.1 JSP Page Mode

A JSP pageis represented at execution time by a JSP page implementation
object and is executed by a JSP container. The JSP page implementation object isa
servlet. The JSP container delivers requests from aclient to a JSP page implementa-
tion abject and responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object
for agiven protocol, possibly creating and/or using some other objectsin the
process. A JSP page may also indicate how some events are to be handled. In JSP
2.0 only init and destroy events are allowed events.

JSP.11.1.1 Protocol Seen by the Web Server

The JSP container |ocates the appropriate instance of the JSP page implementa-
tion class and ddlivers requests to it using the servlet protocol. A JSP container may
need to create such aclass dynamically from the JSP page source before delivering
request and response objectstoit.

The Servlet class defines the contract between the JSP container and the JSP
page implementation class. When the HT TP protocol is used, the contract is

JavaServer Pages 2.0 Specification

2-3

JSP CONTAINER

described by the HttpServlet class. Most JSP pages use the HT TP protocol, but
other protocols are alowed by this specification.

The JSP container automatically makes a number of server-side objects
available to the JSP page implementation object . See Section JSP.1.8.3.

JSP.11.1.1.1 Protocol Seen by the JSP Page Author

The JSP specification defines the contract between the JSP container and the
JSP page author. This contract defines the assumptions an author can make for the
actions described in the JSP page.

The main portion of this contract isthe _jspService method that is generated
automatically by the JSP container from the JSP page. The details of this contract
are provided in Chapter JSP.9.

The contract also describes how a JSP author can indicate what actionswill be
taken when the init and destroy methods of the page implementation occur. In JSP
2.0 thisis done by defining methods with the names jsplinit and jspDestroy in a
declaration scripting element in the JSP page. The jspinit method, if present, will
be called to prepare the page before the first request is delivered. Similarly a JSP
container can reclaim resources used by a JSP page when arequest is not being
serviced by the JSP page by invoking its jspDestroy method, if present.

A JSP page author may not (re)define servlet methods through a declaration
scripting element.

The JSP specification reserves names for methods and variables starting with
isp, _jsp, jspx, and _jspx, in any combination of upper and lower case.

JSP.11.1.1.2 TheHttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page
author is aided by the requirement that the Servlet class corresponding to the JSP
page must implement the javax.servlet.jsp.HttpJspPage interface (or the javax.serv-
let.jsp.JspPage interfaceif the protocol isnot HTTP).

JavaServer Pages 2.0 Specification

JSP Page Implementation Class 2-5

JSP Container JSP Page
init event —— <%!
public void jsplnit()...
request | public void jspDestroy()...

_jspService %>
<html>
Thisisthe response..

</html>
destroy event —f (jspDestroy

REQUEST PROCESSING TRANSLATION PHASE
PHASE

response -

Figure JSP.11-1 Contracts between a JSP Page and a JSP Container.

The involved contracts are shown in Figure JSP.11-1. We now revisit this
whole process in more detail.

JSP.11.2 JSP Page I mplementation Class

The JSP container creates a JSP page implementation class for each JSP page.

The name of the JSP page implementation classisimplementation dependent.

The JSP Page implementation object belongs to an implementati on-dependent
named package. The package used may vary between one JSP and another, so
minimal assumptions should be made.

Asof JSP 2.0, itisillegal to refer to any classes from the unnamed (a.k.a.
default) package. Thismay result in atranglation error on some containers,
specifically those that runin aJDK 1.4 or greater environment. It is unfortunate,
but unavoidable, that thiswill break compatibility with some older JSP
applications. However, as of JDK 1.4, importing classes from the unnamed
package is not valid (see http://java.sun.com/j2se/1.4/compatibility.html#source
for details). Therefore, for forwards compatibility, applications must not rely on
the unnamed package. Thisrestriction also appliesfor all other cases where
classes are referenced, such as when specifying the class name for ataginaTLD.

JavaServer Pages 2.0 Specification

2-6

JSP CONTAINER

The JSP container may create the implementation class for a JSP page, or a
superclass may be provided by the JSP page author through the use of the extends
attribute in the page directive.

The extends mechanism is available for sophisticated users. It should be used
with extreme care as it restricts decisions that a JSP container can make. It may
restrict efforts to improve performance, for example.

The JSP page implementation class will implement javax.servlet.Servlet and
requests are delivered to the class as per the rulesin the Servlet 2.4 specification.

A JSP page implementation class may depend on support classes. If the JSP
page implementation classis packaged into aWAR, any dependent classes will
have to be included so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server
will communicate using a certain protocol. The JSP container must guarantee that
requests to and responses from the page use that protocol. Most JSP pages use
HTTP, and their implementation classes must implement the HttpJspPage
interface, which extends JspPage. If the protocol is not HT TP, then the class will
implement an interface that extends JspPage.

JSP.11.2.1 API Contracts

The contract between the JSP container and a Java class implementing a JSP
page corresponds to the Servlet interface. Refer to the Servlet 2.4 specification for
details.

The responsibility for adhering to this contract rests on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp
directive. If the extends attribute of the jsp directive is used, the JSP page author
must guarantee that the superclass given in the extends attribute supports this
contract.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

void jsplnit() Method is optionally defined in
JSP page.
Method is invoked when the JSP
pageisinitialized.

When method is called all the
methods in servlet, including get-
ServletConfig are available

JavaServer Pages 2.0 Specification

JSP Page Implementation Class

2-7

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes

Comments

void jspDestroy()

void _jspService(<ServletRequestSubtype>,
<ServletResponseSubtype>) throws
IOException, ServletException

Method is optionally defined in
JSP page.

Method isinvoked before
destroying the page.

Method may not be defined in
JSP page.

The JSP container automatically
generates this method, based on
the contents of the JSP page.
Method invoked at each client
request.

JSP.11.2.2

Request and Response Parameters

Asshown in Table JISP11-1, the methods in the contract between the JSP con-
tainer and the JSP page require request and response parameters.

The formal type of the request parameter (which this specification calls
<ServletRequestSubtype>) is an interface that extends javax.servlet.ServletRe-
quest. The interface must define a protocol-dependent request contract between
the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification
calls <ServletResponseSubtype>) is an interface that extends javax.servlet.Servlet-
Response. The interface must define a protocol-dependent response contract
between the JSP container and the class that implements the JSP page.

The reguest and response interfaces together describe a protocol-dependent
contract between the JSP container and the class that implements the JSP page.
The HTTP contract is defined by the javax.servlet.http.HttpServietRequest and
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe
syntactically the methods involving the Serviet(Request,Response) subtypes.
However, interfaces for specific protocols that extend JspPage can, just as
HttpJspPage describes them for the HTTP protocol.

JSP containers that conform to this specification (in both JSP page
implementation classes and JSP container runtime) must support the request and
response interfaces for the HTTP protocol as described in this section.

JavaServer Pages 2.0 Specification

JSP CONTAINER

JSP.11.2.3 Omitting the extends Attribute

If the extends attribute of the page directive (see Section 1.10.1) in a JSP page
is not used, the JSP container can generate any class that satisfies the contract
described in Table JSP.11-1, when it transforms the JSP page.

In the following code examples, Code Example JSP.11-1 illustrates a generic
HTTP superclass named ExampleHttpSuper. Code Example JSP.11-2 shows a
subclass named _jsp1344 that extends ExampleHttpSuper and is the class
generated from the JSP page. By using separate _jsp1344 and ExampleHttpSuper
classes, the JSP page translator does not need to discover whether the JSP page
includes a declaration with jspinit or jspDestroy. This significantly simplifies the
implementation.

Code Example JSP.11-1A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**

* An example of a superclass for an HTTP JSP class
*

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;

jspInit();
}
public void jsplnit() {
}
public void jspDestroy() {
}
}

final public ServletConfig getServletConfig() {
return config;

}

JavaServer Pages 2.0 Specification

JSP Page Implementation Class 2-9

/I This one is not final so it can be overridden by a more precise method
public String getServletinfo() {
return “A Superclass for an HTTP JSP”; // maybe better?

}

final public void destroy() {
jspDestroy();

}

/**

* The entry point into service.
*

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

Il casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServiletResponse) res;

_jspService(request, response);

}

/**

* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Code Example JSP.11-2The Java Class Generated From a JSP Page

JavaServer Pages 2.0 Specification

2-10 JSP CONTAINER

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**

* An example of a class generated for a JSP.

*

* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)

*
class _jsp1344 extends ExampleHttpSuper {

/I Next code inserted directly via declarations.

/I Any of the following pieces may or not be present
/l'if they are not defined here the superclass methods
/I will be used.

public void jsplinit() {....}
public void jspDestroy() {....}

/I The next method is generated automatically by the
/I ISP processor.
/l body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

[initialization of the implicit variables
...

/I next is code from scriptlets, expressions, and static text.

JSP.11.2.4 Using the extends Attribute

If the JSP page author uses extends, the generated classisidentical to the one
shown in Code Example JSP.11-2, except that the class nameisthe one specified in
the extends attribute.

JavaServer Pages 2.0 Specification

Buffering 211

The contract on the JSP page implementation class does not change. The JSP
container should check (usually through reflection) that the provided superclass:

» Implements HttpJspPage if the protocol isSHTTP, or JspPage otherwise.

« All of the methods in the Serviet interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided
superclass satisfies:

» The service method of the servlet API invokesthe jspService method.

» Theinit(ServletConfig) method stores the configuration, makesit available via
getServletConfig, then invokes jspinit.

» The destroy method invokes jspDestroy.

A JSP container may give afatal trandation error if it detectsthat the provided
superclass does not satisfy these requirements, but most JSP containers will not
check them.

JSP.11.3 Buffering

The JSP container buffers data (if the jsp directive specifiesit using the buffer
atribute) asit is sent from the server to the client. Headers are not sent to the client
until the first flush method isinvoked. Therefore, it is possible to call methods that
modify the response header, such as setContentType, sendRedirect, or error meth-
ods, up until the flush method is executed and the headers are sent. After that point,
these methods becomeinvalid, as per the Servlet specification.

The javax.servlet.jsp.JspWriter class buffers and sends output. The JspWriter
classisused in the _jspService method as in the following example:

JavaServer Pages 2.0 Specification

2-12 JSP CONTAINER

import javax.servlet.jsp.JspWriter;
static JspFactory _jspFactory = JspFactory.getDefaultFactory();
_jspService(<SRequest> request, <SResponse> response) {

[initialization of implicit variables...
PageContext pageContext = _jspFactory.createPageContext(
this,
request,
response,
false,
PageContext. DEFAULT_BUFFER,
false
);
JSPWriter out = pageContext.getOut();
...
/I the body goes here using "out"
...
out.flush();

}

The complete listing of javax.servlet.jsp.JspWriter can be found in
Chapter JSP12.

With buffering turned on, a redirect method can still be used in ascriptletina
Jsp file, by invoking response.redirect(someURL) directly.

JSP.11.4 Precompilation

A JSP pagethat isusing the HT TP protocol will receive HTTP requests. JSP 2.0
compliant containers must support a simple precompilation protocol, aswell as
some basic reserved parameter names. Note that the precompilation protocol is
related but not the same as the notion of compiling a JSP page into a Servlet class
(Appendix JSPA).

JSP.11.4.1 Request Parameter Names

All request parameter names that start with the prefix jsp are reserved by the
JSP specification and should not be used by any user or implementation except as
indicated by the specification.

JavaServer Pages 2.0 Specification

Debugging Requirements 2-13

All JSPs pages should ignore (not depend on) any parameter that starts with
jsp_.

JSP.11.4.2 Precompilation Protocol

A request to a JSP page that has arequest parameter with name jsp_precompile
isaprecompilation request. The jsp_precompile parameter may have no value, or
may have valuestrue or false. In al cases, the request should not be delivered to the
JSP page.

The intention of the precompilation request is that of a suggestion to the JSP
container to precompile the JSP page into its JSP page implementation class. The
suggestion is conveyed by giving the parameter the valuetrue or no value, but note
that the request can be ignored.

For example:

?jsp_precompile

?jsp_precompile=true

1

2.

3. ?jsp_precompile=false

4. ?foobar=foobaz&jsp_precompile=true
5.

?foobar=foobaz&jsp_precompile=false

1, 2, and 4 are legal; the request will not be delivered to the page. 3 and 5 are
legal; the request will not be delivered to the page.

6. ?jsp_precompile=foo

Thisisillegal and will generate an HTTP error; 500 (Server error).

JSP.11.5 Debugging Requirements

With the completion of JSR-045 ("Debugging Support for Other Languages'),
the JSP Compiler now has a standard format to convey source map debugging infor-
mation to tools such as debuggers. See http://jcp.org/jsr/detail/45.jsp for details.

JSP 2.0 containers are strongly recommended, but not required, to be capable
of generating source map debugging information for JSP pages and tag files
written in either standard or XML syntax. The JSP compiler should be able to
produce .class files with a SourceDebugExtension attribute, mapping each line or
lines of JSP code to the corresponding generated line or lines of Java code. For
both pages and tag files, the stratum that maps to the original source should be

JavaServer Pages 2.0 Specification

2-14

JSP CONTAINER

named JSP in the Source Debug Extension (this stratum nameis reserved for use
by the JSP specification). This stratum should be specified as the default, unless
the page or tag file was generated from some other source.

The exact mechanism for causing the JSP compiler to produce source map
debugging information is currently implementation-dependent. Full runtime
support for JSR-45 (as opposed to only generating the SMAPs that are used at
runtime) will typically only be supported when the JSP container isrunning in a
J2SE 1.4 or greater environment.

JSP.115.1 Line Number Mapping Guidelines

Thefollowing isaset of non-normative guidelines for generating high quality
line number mappings. The guidelines are presented to help produce a consistent
debugging experience for page authors, across containers. Where possible the JSP
container should generate line number mappings as follows:

1. Abreakpoint on a JSP line causes execution to stop before any Javacodewhich
amountsto atrandlation of the JSP lineis executed (for one possible exception,
see 5). Notethat given the Linelnfo Composition Algorithm (see JSR-45 spec-
ification), it is acceptable for the mappings to include one or more Java lines
which are never trandlated into executabl e byte code, aslong as at least one of
them does.

2. It is permitted for two or more lines of JSP to include the same Javalinesin
their mappings.

3. If aline of JSP has no manifestation in the Java source other than white-space
preserving source, it should not be mapped.

- Thefollowing standard syntax JSP entities should not be mapped to gener-
ated code. These entities either have no manifestation in the generated Java
code (e.g. comments), or are not manifest in such away that it allowsthe de-
bugged process to stop (e.g. the page directive import):

¢ JSP comments
 Directives

- Thefollowing XML syntax JSP entities should not be mapped to generated
code. These entities frequently have no manifestation in the generated Java
code.

* <jsp:root>
* <jsp:output>

4. Declarations and scriptlets (standard or XML JSP). Lines in these constructs

JavaServer Pages 2.0 Specification

Debugging Requirements 2-15

should preserve a one-to-one mapping with the corresponding generated code
lines. Empty lines and comment lines are not mapped.

5. For scriptlets, scriptlet expressions, EL expressions, standard actions and cus-
tom actions in template text, a line containing one or more of these entities
should be mapped to Java source lines which include the corresponding Java
code.

If the line starts with template text, the Java code which handles it may be
excluded from the mappingsif this would cause the debugger to stop before
the apparent execution of JSP lines preceding the line in question. For exam-
ple

100 <p>This is a line with template text.</p>
101 <hl><fmt:message key="company" bundle="${bundle}"'/></h1>

200 out.write("<p>This is a line with template text.</p>\r\n");
201 out.write("<h1>");
202 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =

203 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
204 taghandler.setPageContext(pageContext);
205

In this example, given that <h1> hasits own call to write(), it makes senseto
map 101 to 201, 202 etc.

200 out.write("<p>This is a line with template text.</p>\r\n<h1>");
201 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =

202 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
203 taghandler.setPageContext(pageContext);
204

In this second example, given that <h1> is output using the same call to write()
that was used for line 100, mapping 101 to 202, 203 etc. may result in more
intuitive behavior of the debugger.

For scriptlets that contain more than one line, there should be a one-to-one
mapping from JSP to Javalines, and the mapping should start at the first Java
code that is not whitespace or comments. Therefore, aline that contains only
the open scriptlet delimeter is not mapped.

6. Scriptlet expressions and EL expressions in attribute values. The source line

mappings should include any Java source lines that deal with the evaluation of
the rtexpr value as well as source that deals with the JSP action.

JavaServer Pages 2.0 Specification

2-16 JSP CONTAINER

7. Standard or custom actions.

- Empty tags and start tags specia case: The jsp:params action typically has
no manifestation and should not be mapped.

- Empty tags and start tags: The Javaline mappings should include as much of
the corresponding Java code as possible, including any separate lines that
deal with rtexpr evaluation as described in (6). If it is not possible to include
al the Java code in the mappings, the mapped lines should include the first
sequential line which deals with either the tag or the attribute evaluation in
order to meet (1).

- Closing tags frequently do not have a manifestation in the Java source, but
sometimes do. In case a JSP line contains only aclosing tag, the line may be
mapped to whitespace preserving Java source if it has ho semantic tranda
tion. Thiswill avoid a confusing user experience where it is sometimes pos-
sible to set a breakpoint on aline consisting of aclosing tag and sometimes
not.

JavaServer Pages 2.0 Specification

cineren JOP. 12

Core APl

T his chapter describes the javax.servlet.jsp package. The chapter includes
content that is generated automatically from Javadoc embedded into the actua Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

The javax.servlet.jsp package contains a number of classes and interfaces that
describe and define the contracts between a JSP page implementation class and
the runtime environment provided for an instance of such a class by a conforming
JSP container.

JSP.12.1 JSP Page mplementation Object Contract

This section describes the basic contract between a JSP Page implementation
object and its container. The main contract is defined by the classes JspPage and
HttpJspPage. The JspFactory class describes the mechanism to portably instantiate
al needed runtime objects, and JspEngineinfo provides basic information on the cur-
rent JSP container.

None of the classes described here are intended to be used by JSP page
authors; an example of how these classes may be used isincluded elsewherein
this chapter.

JSP.12.1.1 JspPage

Syntax
public interface JspPage extends javax.servlet.Servlet

All Known Subinterfaces. HttpJspPage

2-17

2-18

CORE API

All Superinterfaces. javax.serviet.Servlet

Description

The JspPage interface describes the generic interaction that a JSP Page Imple-
mentation class must satisfy; pages that use the HTTP protocol are described by
the HttpJspPage interface.

Two plus One Methods

The interface defines a protocol with 3 methods; only two of them: jsplnit() and
jspDestroy() are part of this interface as the signature of the third method: _jsp-
Service() depends on the specific protocol used and cannot be expressed in a
generic way in Java.

A classimplementing thisinterface is responsible for invoking the above methods
at the appropriate time based on the corresponding Servlet-based method invoca:
tions.

The jspInit() and jspDestroy() methods can be defined by a JSP author, but the
_jspService() method is defined automatically by the JSP processor based on the
contents of the JSP page.

_ispService()

The _jspService()method corresponds to the body of the JSP page. Thismethod is
defined automatically by the JSP container and should never be defined by the
JSP page author.

If asuperclassis specified using the extends attribute, that superclass may choose
to perform some actions in its service() method before or after calling the
_jgpService() method. See using the extends attribute in the JSP_Engine chapter
of the JSP specification.

The specific signature depends on the protocol supported by the JSP page.
public void _jspService(ServletRequestSubtype request,
ServletResponseSubtype response)
throws ServletException, IOException;

JSP.12.1.1.1 Methods

public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be
destroyed. A JSP page can override this method by including a definition for
it in adeclaration element. A JSP page should redefine the destroy() method
from Servlet.

JavaServer Pages 2.0 Specification

JSP Page Implementation Object Contract 2-19

public void jsplinit()

The jsplnit() method isinvoked when the JSP pageisinitialized. It isthe
responsibility of the JSP implementation (and of the class mentioned by the
extends attribute, if present) that at this point invocations to the getServlet-
Config() method will return the desired value. A JSP page can override this
method by including a definition for it in a declaration element. A JSP page
should redefine the init() method from Servlet.

JSP.12.1.2 HttpJspPage

Syntax
public interface HttpJspPage extends JspPage

All Superinterfaces. JspPage, javax.servlet.Servlet

Description

The HttpJspPage interface describes the interaction that a JSP Page I mplementa-
tion Class must satisfy when using the HTTP protocol.

The behaviour is identical to that of the JspPage, except for the signature of the
_jspService method, which is now expressible in the Java type system and
included explicitly in the interface.

See Also: JspPage

JSP.12.1.2.1 Methods

public void _jspService(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

The _jspService()method corresponds to the body of the JSP page. This
method is defined automatically by the JSP container and should never be
defined by the JSP page author.

If asuperclassis specified using the extends attribute, that superclass may
choose to perform some actionsin its service() method before or after calling
the _jspService() method. See using the extends attribute in the JSP_Engine
chapter of the JSP specification.

Parameters:
request - Provides client request information to the JSP.

response - Assists the JSP in sending a response to the client.

JavaServer Pages 2.0 Specification

2-20

CORE API

Throws:

ServletException - Thrown if an error occurred during the processing of the
JSP and that the container should take appropriate action to clean up the
request.

IOException - Thrown if an error occurred while writing the response for this
page.

JSP.12.1.3 JspFactory

Syntax

public abstract class JspFactory

Description

The JspFactory is an abstract class that defines a number of factory methods
available to a JSP page at runtime for the purposes of creating instances of vari-
ous interfaces and classes used to support the JSP implementation.

A conformant JSP Engine implementation will, during it's initialization instanti-
ate an implementation dependent subclass of this class, and make it globally
available for use by JSP implementation classes by registering the instance cre-
ated with this class viathe static setDefaultFactory() method.

The PageContext and the JspEnginelnfo classes are the only implementation-
dependent classes that can be created from the factory.

JspFactory objects should not be used by JSP page authors.

JSP.12.1.3.1 Constructors

public JspFactory()
Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.1.32 Methods

public static synchronized JspFactory getDefaultFactory()
Returns the default factory for this implementation.
Returns: the default factory for thisimplementation
public abstract JspEnginelnfo getEnginelnfo()
called to get implementation-specific information on the current JSP engine.

Returns: aJspEnginelnfo object describing the current JSP engine

JavaServer Pages 2.0 Specification

JSP Page Implementation Object Contract 221

public abstract PageContext getPageContext(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String errorPageURL,
boolean needsSession, int buffer, boolean autoflush)

obtains an instance of an implementation dependent javax.servlet.jsp.Page-
Context abstract class for the calling Servlet and currently pending request
and response.

This method istypically called early in the processing of the _jspService()
method of a JSP implementation classin order to obtain a PageContext object
for the request being processed.

Invoking this method shall result in the PageContext.initialize() method being
invoked. The PageContext returned is properly initialized.

All PageContext objects obtained via this method shall be released by invok-
ing rel easePageContext().

Parameters:

servlet - the requesting servlet

request - the current request pending on the servlet

response - the current response pending on the servlet

errorPageURL - the URL of the error page for the requesting JSP, or null
needsSession - true if the JSP participatesin a session

buffer - size of buffer in bytes, PageContext. NO_BUFFER if no buffer,
PageContext. DEFAULT_BUFFER if implementation defaullt.

autoflush - should the buffer autoflush to the output stream on buffer
overflow, or throw an |OEXxception?

Returns. the page context
See Also: PageContext
public abstract void releasePageContext(PageContext pc)

called to release a previoudly allocated PageContext object. Results in Page-
Context.release() being invoked. This method should be invoked prior to
returning from the _jspService() method of a JSP implementation class.

Parameters:
pc - A PageContext previously obtained by getPageContext()

public static synchronized void setDefaultFactory(JspFactory deflt)

set the default factory for thisimplementation. It isillegal for any principa
other than the JSP Engine runtime to call this method.

Parameters:

JavaServer Pages 2.0 Specification

2-22 CORE AP

deflt - The default factory implementation

JSP.12.1.4 JspEnginel nfo

Syntax
public abstract class JspEnginelnfo

Description

The JspEnginelnfo is an abstract class that provides information on the current
JSP engine.

JSP.12.14.1 Constructors
public JspEnginelnfo()
Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.1.4.2 Methods
public abstract java.lang.String getSpecificationVersion()

Return the version number of the JSP specification that is supported by this
JSP engine.

Specification version numbers that consists of positive decimal integers sepa-
rated by periods*“.”, for example, “2.0” or “1.2.3.4.5.6.7". Thisalows an
extensible number to be used to represent major, minor, micro, etc versions.
The version number must begin with a number.

Returns: the specification version, null isreturned if it is not known

JSP.12.2 Implicit Objects

The PageContext object and the JspWriter are available by default asimplicit
objects.

JSP.12.2.1 JspContext

Syntax

public abstract class JspContext
Direct Known Subclasses. PageContext

JavaServer Pages 2.0 Specification

Implicit Objects 2-23

Description

JspContext serves as the base class for the PageContext class and abstracts all
information that is not specific to servlets. This alows for Simple Tag Extensions
to be used outside of the context of a request/response Servlet.

The JspContext provides a number of facilities to the page/component author and
page implementor, including:
easingle API to manage the various scoped namespaces
eamechanism to obtain the JspWriter for output
«a mechanism to expose page directive attributes to the scripting environ-
ment

M ethods I ntended for Container Generated Code

The following methods enable the management of nested JspWriter streams to
implement Tag Extensions: pushBody() and popBody()

M ethods | ntended for JSP authors

Some methods provide uniform access to the diverse objects representing
scopes. The implementation must use the underlying machinery corresponding to
that scope, so information can be passed back and forth between the underlying
environment (e.g. Servlets) and JSP pages. The methods are: setAttribute(), get-
Attribute(), findAttribute(), removeAttribute(), getAttributesScope() and getAttribute-
NamesInScope().

The following methods provide convenient access to implicit objects. getOut()
The following methods provide programmatic access to the Expression Lan-
guage evaluator: getExpressionEvaluator(), getVariableResolver()

Since; 2.0

JSP.12.21.1 Constructors
public JspContext()
Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.2.1.2 Methods
public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and appli-
cation scope(s) in order and returns the val ue associated or null.

Parameters:

JavaServer Pages 2.0 Specification

2-24

CORE API

name - the name of the attribute to search for
Returns; the value associated or null

Throws:
NullPointerException - if the nameis null

public abstract java.lang.Object getAttribute(java.lang.String name)

Returns the object associated with the name in the page scope or null if not
found.

Parameters:
name - the name of the attribute to get

Returns. the object associated with the namein the page scope or null if not
found.

Throws:
NullPointerException - if the nameis null

public abstract java.lang.Object getAttribute(java.lang.String name, int scope)

Return the object associated with the name in the specified scope or null if
not found.

Parameters:
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Returns. the object associated with the name in the specified scope or null
if not found.

Throws:
NullPointerException - if the nameis null

lllegalArgumentException - if the scopeisinvalid

lllegalStateException - if the scope is PageContext. SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

public abstract java.util. Enumeration getAttributeNamesInScope(int scope)

Enumerate all the attributes in a given scope.

Parameters:
scope - the scope to enumerate all the attributes for

Returns: an enumeration of names (java.lang.String) of all the attributesthe
specified scope

Throws:
lllegalArgumentException - if the scopeisinvalid

JavaServer Pages 2.0 Specification

Implicit Objects

lllegalStateException - if the scope is PageContext. SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

public abstract int getAttributesScope(java.lang.String name)
Get the scope where a given attribute is defined.

Parameters:
name - the name of the attribute to return the scope for

Returns: the scope of the object associated with the name specified or 0

Throws:
NullPointerException - if the nameis null

public abstract ExpressionEvaluator getExpressionEvaluator()

Provides programmatic access to the ExpressionEvaluator. The JSP Con-
tainer must return avalid instance of an ExpressionEvaluator that can parse
EL expressions.

Returns: A valid instance of an ExpressionEvaluator.

Since: 2.0
public abstract JspWriter getOut()

The current value of the out object (a JspWiriter).

Returns: the current JspWriter stream being used for client response
public abstract VariableResolver getVariableResolver()

Returns an instance of a VariableResolver that provides accessto theimplicit
objects specified in the JSP specification using this JspContext as the context
object.

Returns: A valid instance of a VariableResolver.
Since: 2.0
public JspWriter popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and
update the value of the “out” attributein the page scope attribute namespace
of the JspContext.

Returns: the saved JspWriter.
public JspWriter pushBody(java.io.Writer writer)

Return anew JspWiriter object that sends output to the provided Writer. Saves
the current “out” JspWriter, and updates the value of the “out” attribute in the
page scope attribute namespace of the JspContext.

JavaServer Pages 2.0 Specification

2-25

2-26

CORE API

The returned JspWriter must implement all methods and behave as though it
were unbuffered. More specifically:

eclear() must throw an |OException
«clearBuffer() does nothing
getBufferSize() aways returns 0
egetRemaining() aways returns 0

Parameters:
writer - The Writer for the returned JspWriter to send output to.

Returns: anew JspWriter that writes to the given Writer.
Since: 2.0

public abstract void removeAttribute(java.lang.String name)

Remove the object reference associated with the given name from all scopes.
Does nothing if there is no such object.

Parameters:
name - The name of the object to remove.

Throws:
NullPointerException - if the nameis null

public abstract void removeAttribute(java.lang.String name, int scope)

Remove the object reference associated with the specified name in the given
scope. Does nothing if there is no such object.

Parameters:
name - The name of the object to remove.

scope - The scope where to |ook.

Throws:
lllegalArgumentException - if the scopeisinvalid

lllegalStateException - if the scope is PageContext. SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

NullPointerException - if the nameis null

public abstract void setAttribute(java.lang.String name, java.lang.Object value)

Register the name and value specified with page scope semantics. If the value
passed in is null, this has the same effect as calling removeAttribute(name,
PageContext. PAGE_SCOPE).

Parameters;
name - the name of the attribute to set

JavaServer Pages 2.0 Specification

Implicit Objects

value - the value to associate with the name, or null if the attribute is to be
removed from the page scope.

Throws:
NullPointerException - if the name is null

public abstract void setAttribute(java.lang.String name, java.lang.Object value,
int scope)

Register the name and value specified with appropriate scope semantics. If
the value passed in is null, this has the same effect as calling removeAttribute(
name, scope).

Parameters:
name - the name of the attribute to set

value - the object to associate with the name, or null if the attribute isto be
removed from the specified scope.

scope - the scope with which to associate the name/object

Throws:
NullPointerException - if the nameis null

lllegalArgumentException - if the scopeisinvalid

lllegalStateException - if the scope is PageContext. SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

JSP.12.2.2 PageContext

Syntax

public abstract class PageContext extends JspContext

Description

PageContext extends JspContext to provide useful context information for when
JSP technology is used in a Servlet environment.

A PageContext instance provides access to all the namespaces associated with a
JSP page, provides access to severa page attributes, as well as a layer above the
implementation details. Implicit objects are added to the pageContext automati-
cally.

The PageContext class is an abstract class, designed to be extended to provide
implementation dependent implementations thereof, by conformant JSP engine
runtime environments. A PageContext instance is obtained by a JSP implementa-

JavaServer Pages 2.0 Specification

2-27

2-28

CORE API

tion class by calling the JspFactory.getPageContext() method, and is released by
calling JspFactory.rel easePageContext().

An example of how PageContext, JspFactory, and other classes can be used
within a JSP Page |mplementation object is given elsewhere.

The PageContext provides a number of facilities to the page/component author
and page implementor, including:
easingle APl to manage the various scoped namespaces
*a number of convenience API’sto access various public objects
*a mechanism to obtain the JspWriter for output
*a mechanism to manage session usage by the page
eamechanism to expose page directive attributes to the scripting environment
*mechanisms to forward or include the current request to other active compo-
nentsin the application
*a mechanism to handle errorpage exception processing

Methods | ntended for Container Generated Code

Some methods are intended to be used by the code generated by the container, not
by code written by JSP page authors, or JSP tag library authors.

The methods supporting lifecycle are initialize() and release()

The following methods enable the management of nested JspWriter streams to
implement Tag Extensions: pushBody()

Methods I ntended for JSP authors

The following methods provide convenient access to implicit objects: get-
Exception(), getPage() getRequest(), getResponse(), getSession(), getServiet-
Config() and getServletContext().

The following methods provide support for forwarding, inclusion and error
handling: forward(), include(), and handlePageException().

JSP.12.2.2.1 Fields

public static final java.lang.String APPLICATION
Name used to store ServletContext in PageContext name table.
public static final int APPLICATION_SCOPE

Application scope: named reference remains available in the ServletContext
until it is reclaimed.

public static final java.lang.String CONFIG
Name used to store ServletConfig in PageContext name table.

JavaServer Pages 2.0 Specification

Implicit Objects 2-29

public static final java.lang.String EXCEPTION

Name used to store uncaught exception in ServletRequest attribute list and
PageContext name table.

public static final java.lang.String OUT

Name used to store current JspWriter in PageContext name table.
public static final java.lang.String PAGE

Name used to store the Servlet in this PageContext’s nametabl es.
public static final int PAGE_SCOPE

Page scope: (thisisthe default) the named reference remains availablein this
PageContext until the return from the current Servlet.service() invocation.

public static final java.lang.String PAGECONTEXT

Name used to store this PageContext in it's own name table.
public static final java.lang.String REQUEST

Name used to store ServletRequest in PageContext name table.
public static final int REQUEST_SCOPE

Request scope: the named reference remains available from the Servlet-
Request associated with the Servlet until the current request is compl eted.

public static final java.lang.String RESPONSE

Name used to store ServletResponse in PageContext name table.
public static final java.lang.String SESSION

Name used to store HttpSession in PageContext name table.
public static final int SESSION_SCOPE

Session scope (only valid if this page participates in a session): the named
reference remains available from the HttpSession (if any) associated with the
Servlet until the HitpSession is invalidated.

JSP.12.2.2.2 Constructors
public PageContext()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.2.2.3 Methods
public abstract void forward (java.lang.String relativeUrlPath)

Thismethod isused to re-direct, or “forward” the current ServletRequest and
ServletResponse to another active component in the application.

JavaServer Pages 2.0 Specification

2-30

CORE API

If the relativeUrlPath beginswith a“/” then the URL specified is calcul ated
relative to the DOCROQT of the ServletContext for this JSP. If the path does
not begin with a*/” then the URL specified is calcul ated relative to the URL
of the request that was mapped to the calling JSP.

Itisonly valid to call this method from a Thread executing withina _jsp-
Service(...) method of a JSP.

Once this method has been called successfully, it isillegal for the calling
Thread to attempt to modify the ServletResponse object. Any such attempt
to do so, shall result in undefined behavior. Typically, callersimmediately
return from _jspService(...) after calling this method.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource as
described above

Throws:
lllegalStateException - if ServletResponse isnot in astate where aforward
can be performed

ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding

public ErrorData getErrorData()

Provides convenient access to error information.

Returns: an ErrorDatainstance containing information about the error, as
obtained from the request attributes, as per the Servlet specification. If thisis
not an error page (that is, if the isErrorPage attribute of the page directive is
not set to “true”), the information is meaningless.

Since 2.0

public abstract java.lang.Exception getException()

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage

public abstract java.lang.Object getPage()

The current value of the page object (In a Servlet environment, thisisan
instance of javax.servlet.Servlet).

Returns. the Page implementation class instance associated with this
PageContext

public abstract javax.servlet.ServletRequest getRequest()

The current value of the request object (a ServletRequest).

JavaServer Pages 2.0 Specification

Implicit Objects 2-31

Returns: The ServletRequest for this PageContext

public abstract javax.servlet.ServletResponse getResponse()
The current value of the response object (a ServletResponse).
Returns: the ServletResponse for this PageContext

public abstract javax.servlet.ServletConfig getServietConfig()
The ServletConfig instance.
Returns: the ServletConfig for this PageContext

public abstract javax.servlet.ServletContext getServletContext()
The ServletContext instance.
Returns: the ServletContext for this PageContext

public abstract javax.servlet.http.HttpSession getSession()
The current value of the session object (an HttpSession).
Returns: the HttpSession for this PageContext or null

public abstract void handlePageException(java.lang.Exception e)

This method is intended to process an unhandled *page’ level exception by
forwarding the exception to the specified error page for this JSP. If forward-
ing is not possible (for example because the response has aready been com-
mitted), an implementation dependent mechanism should be used to invoke
the error page (e.g. “including” the error page instead).

If no error page is defined in the page, the exception should be rethrown so
that the standard servlet error handling takes over.

A JSP implementation class shall typically clean up any local state prior to

invoking this and will return immediately thereafter. It isillegal to generate
any output to the client, or to modify any ServletResponse state after invok-
ing this call.

This method is kept for backwards compatiblity reasons. Newly generated
code should use PageContext.handlePageException(Throwable).

Parameters:
e - the exception to be handled

Throws:
ServletException - if an error occurs while invoking the error page

IOException - if an |/O error occurred while invoking the error page

NullPointerException - if the exception is null

JavaServer Pages 2.0 Specification

2-32

CORE API

See Also: public abstract void
handlePageException(java.lang. Throwable t)

public abstract void handlePageException(java.lang.Throwable t)

This method is intended to process an unhandled 'page’ level exception by
forwarding the exception to the specified error page for this JSP. If forward-
ing is not possible (for example because the response has already been com-
mitted), an implementation dependent mechanism should be used to invoke
the error page (e.g. “including” the error page instead).

If no error page is defined in the page, the exception should be rethrown so
that the standard servlet error handling takes over.

This method is intended to process an unhandled “page” level exception by
redirecting the exception to either the specified error page for this JSP, or if
none was specified, to perform some implementation dependent action.

A JSP implementation class shall typically clean up any local state prior to
invoking this and will return immediately thereafter. It isillegal to generate
any output to the client, or to modify any ServletResponse state after invok-
ing this call.

Parameters:
t - the throwable to be handled

Throws:
ServletException - if an error occurs while invoking the error page

IOException - if an I/O error occurred while invoking the error page
NullPointerException - if the exception is null

See Also: public abstract void handlePageException(java.lang.Exception
€)

public abstract void include(java.lang.String relativeUrIPath)

Causes the resource specified to be processed as part of the current Servlet-
Request and ServletResponse being processed by the calling Thread. The
output of the target resources processing of the request iswritten directly to
the ServletResponse output stream.

The current JspWriter “out” for this JSP isflushed as aside-effect of thiscall,
prior to processing the include.

If the relativeUrlPath beginswith a“/” then the URL specified is calcul ated
relative to the DOCROQT of the ServletContext for this JSP. If the path does
not begin with a“/” then the URL specified is calcul ated relative to the URL
of the request that was mapped to the calling JSP.

JavaServer Pages 2.0 Specification

Implicit Objects

Itisonly valid to call this method from a Thread executing withina _jsp-
Service(...) method of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be
included

Throws:
ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding
public abstract void include(java.lang.String relativeUrlPath, boolean flush)

Causes the resource specified to be processed as part of the current Servlet-
Request and ServletResponse being processed by the calling Thread. The
output of the target resources processing of the request is written directly to
the current JspWriter returned by acall to getOut().

If flush istrue, The current JspWriter “out” for this JSPis flushed as a side-
effect of this call, prior to processing the include. Otherwise, the JspWriter
“out” is not flushed.

If the relativeUr|Path begins with a“/” then the URL specified is calculated

relative to the DOCROQT of the ServletContext for this JSP. If the path does
not begin with a“/” then the URL specified is calculated relative to the URL
of the request that was mapped to the calling JSP.

Itisonly valid to call this method from a Thread executing withina _jsp-
Service(...) method of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be
included

flush - Trueif the JspWriter is to be flushed before the include, or falseif not.

Throws:
ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding
Since: 2.0

public abstract void initialize(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String errorPageURL,
boolean needsSession, int bufferSize, boolean autoFlush)

JavaServer Pages 2.0 Specification

2-33

CORE API

Theinitialize method is called to initialize an uninitialized PageContext so
that it may be used by a JSP Implementation class to service an incoming
request and response within it's _jspService() method.

This method istypically called from JspFactory.getPageContext() in order to
initialize state.

Thismethod is required to create an initial JspWriter, and associate the “out”
name in page scope with this newly created object.

This method should not be used by page or tag library authors.

Parameters:
servlet - The Servlet that is associated with this PageContext

request - The currently pending request for this Servlet
response - The currently pending response for this Servlet

errorPageURL - The value of the errorpage attribute from the page directive
or null

needsSession - The value of the session attribute from the page directive
bufferSize - The value of the buffer attribute from the page directive
autoFlush - The value of the autoflush attribute from the page directive

Throws:
IOException - during creation of JspWriter

lllegalStateException - if out not correctly initialized
lllegalArgumentException - If one of the given parametersisinvalid
public BodyContent pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and
update the value of the “out” attribute in the page scope attribute namespace
of the PageContext.

Returns; the new BodyContent
public abstract void release()

This method shall “reset” the internal state of a PageContext, releasing all
internal references, and preparing the PageContext for potential reuse by a
later invocation of initialize(). This method istypically called from Jsp-
Factory.rel easePageContext().

Subclasses shall envelope this method.
This method should not be used by page or tag library authors.

JavaServer Pages 2.0 Specification

Implicit Objects 2-35
JSP.12.2.3 JspWriter

Syntax

public abstract class JspWriter extends java.io.Writer

Direct Known Subclasses: BodyContent

Description

The actions and template datain a JSP page is written using the JspWriter object
that is referenced by the implicit variable out which is initialized automatically
using methods in the PageContext object.

This abstract class emulates some of the functionality found in the
java.io.BufferedWriter and java.io.PrintWriter classes, however it differsin that it
throws java.io.l OException from the print methods while PrintWriter does not.

Buffering

The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in away that depends on whether the page is or is not buffered.
If the page is not buffered, output written to this JspWriter object will be written
through to the PrintWriter directly, which will be created if necessary by invoking
the getWriter() method on the response object. But if the page is buffered, the
PrintWriter object will not be created until the buffer is flushed and operations
like setContentType() are legal. Since this flexibility simplifies programming sub-
stantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two
approaches can be taken:
*Exceeding the buffer is not a fatal error; when the buffer is exceeded, just
flush the outpui.
*Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an
exception.

Both approaches are valid, and thus both are supported in the JSP technology. The
behavior of a page is controlled by the autoFlush attribute, which defaults to true.
In general, JSP pages that need to be sure that correct and complete data has been
sent to their client may want to set autoFlush to false, with atypical case being
that where the client is an application itself. On the other hand, JSP pages that
send data that is meaningful even when partially constructed may want to set
autoFlush to true; such as when the data is sent for immediate display through a
browser. Each application will need to consider their specific needs.

JavaServer Pages 2.0 Specification

2-36

CORE API

An dternative considered was to make the buffer size unbounded; but, this had
the disadvantage that runaway computations would consume an unbounded
amount of resources.

The “out” implicit variable of a JSP implementation class is of this type. If the
page directive selects autoflush="true”’ then all the 1/O operations on this class
shall automatically flush the contents of the buffer if an overflow condition would
result if the current operation were performed without a flush. If autof-
lush="false” then all the I/O operations on this class shall throw an |OException
if performing the current operation would result in a buffer overflow condition.

See Als0: java.io.Writer, java.io.BufferedWriter, java.io.PrintWriter

JSP.12.2.31 Fields

protected boolean autoFlush

Whether the JspWriter is autoflushing.
protected int bufferSize

The size of the buffer used by the JspWiriter.
public static final int DEFAULT_BUFFER

Constant indicating that the Writer is buffered and is using the implementa-
tion default buffer size.

public static final int NO_BUFFER
Constant indicating that the Writer is not buffering outpuit.
public static final int UNBOUNDED_BUFFER

Constant indicating that the Writer is buffered and is unbounded; thisis used
in BodyContent.

JSP.12.2.3.2 Constructors

protected JspWriter(int bufferSize, boolean autoFlush)
Protected constructor.

Parameters:
bufferSize - the size of the buffer to be used by the JspWriter

autoFlush - whether the JspWriter should be autoflushing

JSP.12.2.3.3 Methods

public abstract void clear()

JavaServer Pages 2.0 Specification

Implicit Objects 2-37

Clear the contents of the buffer. If the buffer has been aready been flushed
then the clear operation shall throw an | OException to signal the fact that
some data has already been irrevocably written to the client response stream.

Throws:
IOException - If an 1/O error occurs

public abstract void clearBuffer()

Clears the current contents of the buffer. Unlike clear(), this method will not
throw an |OException if the buffer has already been flushed. It merely clears
the current content of the buffer and returns.

Throws:
IOException - If an 1/O error occurs

public abstract void close()
Close the stream, flushing it first.

This method needs not be invoked explicitly for the initial JspWriter as the
code generated by the JSP container will automatically include acall to

close().
Closing a previously-closed stream, unlike flush(), has no effect.

Overrides. java.io.Writer.close() in class java.io.Writer

Throws:
IOException - If an 1/O error occurs

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various
write() methods in a buffer, write them immediately to their intended destina-
tion. Then, if that destination is another character or byte stream, flush it.
Thus one flush() invocation will flush all the buffersin achain of Writers and
OutputStreams.

The method may be invoked indirectly if the buffer sizeis exceeded.

Once a stream has been closed, further write() or flush() invocations will
cause an | OException to be thrown.

Overrides. java.io.Writer.flush() in class java.io.Writer

Throws:
IOException - If an I/O error occurs

public int getBufferSize()
This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.

JavaServer Pages 2.0 Specification

2-38

CORE API

public abstract int getRemaining()
This method returns the number of unused bytes in the buffer.
Returns: the number of bytes unused in the buffer

public boolean isAutoFlush()
This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter is auto flushing or throwing | OExceptions on
buffer overflow conditions

public abstract void newLine()

Write aline separator. The line separator string is defined by the system prop-
erty line.separator, and is not necessarily a single newline ('\n’) character.

Throws:
IOException - If an 1/O error occurs

public abstract void print(boolean b)

Print a boolean value. The string produced by
java.lang.String.valueOf(boolean) iswritten to the JspWriter's buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
b - The boolean to be printed

Throws:
java.io.lOException - If an error occured while writing

public abstract void print(char c)

Print a character. The character iswritten to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
¢ - The char to be printed

Throws:
java.io.lOException - If an error occured while writing

public abstract void print(char(] s)

Print an array of characters. The characters are written to the JspWriter's
buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
s - The array of charsto be printed

Throws:
NullPointerException - If s isnull

java.io.lOException - If an error occured while writing

JavaServer Pages 2.0 Specification

Implicit Objects 2-39

public abstract void print(double d)

Print a double-precision floating-point number. The string produced by
java.lang.String.valueOf(double) iswritten to the JspWriter's buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
d - The double to be printed

Throws:
java.io.lOException - If an error occured while writing

See Also: java.lang.Double
public abstract void print(float f)

Print a floating-point number. The string produced by
java.lang.String.valueOf(float) is written to the JspWriter's buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
f - The float to be printed

Throws:
java.io.lOException - If an error occured while writing

See Also: java.lang.Float
public abstract void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(int) iswrit-
ten to the JspWriter’s buffer or, if no buffer isused, directly to the underlying
writer.

Parameters:
i - Theint to be printed

Throws:
java.io.lOException - If an error occured while writing

See Also: java.lang.Integer
public abstract void print(long 1)

Print along integer. The string produced by java.lang.String.valueOf(long) is
written to the JspWriter's buffer or, if no buffer is used, directly to the under-
lying writer.

Parameters:
| - The long to be printed

Throws:
java.io.lOException - If an error occured while writing

See Also: java.lang.Long

JavaServer Pages 2.0 Specification

2-40 CORE AP

public abstract void print(java.lang.Object obj)

Print an object. The string produced by the java.lang.String.valueOf(Object)
method is written to the JspWriter’s buffer or, if no buffer is used, directly to
the underlying writer.

Parameters:
obj - The Object to be printed

Throws:
java.io.lOException - If an error occured while writing

See Also: java.lang.Object.toString()
public abstract void print(java.lang.String s)

Print astring. If the argument is null then the string “null” is printed. Other-
wise, the string’s characters are written to the JspWriter's buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
s - The String to be printed

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin()

Terminate the current line by writing the line separator string. The line sepa-
rator string is defined by the system property line.separator, and is not neces-
sarily asingle newline character (\n').

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(boolean x)

Print a boolean value and then terminate the line. This method behaves as
though it invokes public abstract void print(boolean b) and then public abstract
void printin() .

Parameters;
x - the boolean to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void println(char x)

Print a character and then terminate the line. This method behaves as though
it invokes public abstract void print(char ¢) and then public abstract void
printin() .

Parameters:

JavaServer Pages 2.0 Specification

Implicit Objects 241

x - the char to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(char[] x)
Print an array of characters and then terminate the line. This method behaves
as though it invokes print(char[]) and then printin().

Parameters:
x - the char[] to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(double x)

Print a double-precision floating-point number and then terminate the line.
This method behaves as though it invokes public abstract void print(double d)
and then public abstract void printin() .

Parameters:
x - the double to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(float x)

Print a floating-point number and then terminate the line. This method
behaves as though it invokes public abstract void print(float f) and then public
abstract void printin() .

Parameters;
x - the float to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void println(int x)

Print an integer and then terminate the line. This method behaves as though it
invokes public abstract void print(int i) and then public abstract void printin() .

Parameters:
x - theint to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(long x)

JavaServer Pages 2.0 Specification

2-42

CORE API

Print along integer and then terminate the line. This method behaves as
though it invokes public abstract void print(long I) and then public abstract void
printin() .

Parameters:
x - the long to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(java.lang.Object x)

Print an Object and then terminate the line. This method behaves as though it
invokes public abstract void print(java.lang.Object obj) and then public abstract
void printin() .

Parameters:
x - the Object to write

Throws:
java.io.lOException - If an error occured while writing

public abstract void printin(java.lang.String x)

Print a String and then terminate the line. This method behaves as though it
invokes public abstract void print(java.lang.String s) and then public abstract
void printin() .

Parameters:
x - the String to write

Throws:
java.io.lOException - If an error occured while writing

JSP.12.2.4 ErrorData

Syntax
public final class ErrorData
Description

Contains information about an error, for error pages. The information contained
in thisinstance is meaningless if not used in the context of an error page. To indi-
cate a JSP is an error page, the page author must set the isErrorPeage attribute of
the page directive to “true’.

Since: 2.0

JavaServer Pages 2.0 Specification

An Implementation Example 2-43

See Also: public ErrorData getErrorData()

JSP.12.24.1 Constructors

public ErrorData(java.lang.Throwable throwable, int statusCode,
java.lang.String uri, java.lang.String servletName)

Creates anew ErrorData object.

Parameters;
throwable - The Throwable that is the cause of the error

statusCode - The status code of the error
uri - Therequest URI

servletName - The name of the servlet invoked

JSP.12.24.2 Methods

public java.lang.String getRequestURI()
Returns the request URI.
Returns: Therequest URI

public java.lang.String getServietName()
Returns the name of the servlet invoked.
Returns: The name of the servlet invoked

public int getStatusCode()
Returns the status code of the error.
Returns: The status code of the error

public java.lang.Throwable getThrowable()
Returns the Throwable that caused the error.
Returns: The Throwable that caused the error

JSP.12.3 An Implementation Example
An instance of an implementation dependent subclass of this abstract base class
can be created by a JSP implementation class at the beginning of it's _jspService()

method via an implementation default JspFactory .
Here is one example of how to use these classes

JavaServer Pages 2.0 Specification

2-44

CORE API

public class foo implements Servlet {

...

public void _jspService(HttpServiletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

JspFactory factory = JspFactory.getDefaultFactory();
PageContext pageContext = factory.getPageContext(

this,

request,

response,

null, // errorPageURL

false, // needsSession

JspWriter. DEFAULT_BUFFER,

true // autoFlush

[l initialize implicit variables for scripting env ...
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();

Object page =this;

try {
// body of translated JSP here ...

} catch (Exception e) {
out.clear();
pageContext.handlePageException(e);

} finally {
out.close();

factory.releasePageContext(pageContext);

}
}

JSP.12.4 Exceptions

The JspException classisthe base class for all JSP exceptions. The JspTag-
Exception and SkipPageException exceptions are used by the tag extension mecha-
nism.

JSP.12.4.1 JspException

Syntax
public class JspException extends java.lang.Exception

Direct Known Subclasses. JspTagException, SkipPageException

All Implemented Interfaces. javaio.Serializable

JavaServer Pages 2.0 Specification

Exceptions 2-45

Description

A generic exception known to the JSP engine; uncaught JspExceptions will result
in an invocation of the errorpage machinery.

JSP.124.1.1 Constructors
public JspException()
Construct a JspException.
public JspException(java.lang.String msg)

Constructs a new JSP exception with the specified message. The message can
be written to the server log and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

public JspException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception
and include a message about the “root cause” exception that interfered with
its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the servlet’s normal
operation, making this servlet exception necessary

public JspException(java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception
and include a message about the “root cause” exception that interfered with
its normal operation. The exception’s message is based on the localized mes-
sage of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable excep-
tion to get alocalized exception message. When subclassing JspException,
this method can be overridden to create an exception message designed for a
specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the JSP's normal
operation, making the JSP exception necessary

JSP.12.4.1.2 Methods
public java.lang.Throwable getRootCause()

Returns the exception that caused this JSP exception.

JavaServer Pages 2.0 Specification

2-46 CORE API
Returns: the Throwable that caused this JSP exception
JSP.12.4.2 JspTagException

Syntax

public class JspTagException extends JspException
All Implemented Interfaces. javaio.Seridizable

Description

Exception to be used by a Tag Handler to indicate some unrecoverable error. This
error is to be caught by the top level of the JSP page and will result in an error
page.

JSP.12.42.1 Constructors
public JspTagException()
Constructs a new JspTagException with no message.
public JspTagException(java.lang.String msg)

Constructs a new JspTagException with the specified message. The message
can be written to the server log and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

public JspTagException(java.lang.String message,
java.lang.Throwable rootCause)

Constructs a new JspTagException when the JSP Tag needs to throw an
exception and include a message about the “root cause” exception that inter-
fered with its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the JSP Tag's
normal operation, making this JSP Tag exception necessary

Since: 2.0
public JspTagException(java.lang. Throwable rootCause)

Constructs a new JSP Tag exception when the JSP Tag needs to throw an
exception and include a message about the “root cause” exception that inter-

JavaServer Pages 2.0 Specification

Exceptions 2-47

fered with its normal operation. The exception’s message is based on the
localized message of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable excep-
tion to get alocalized exception message. When subclassing JspTag-
Exception, this method can be overridden to create an exception message
designed for a specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the JSP Tag's
normal operation, making the JSP Tag exception necessary

Since: 2.0

JSP.12.4.3 SkipPageException

Syntax

public class SkipPageException extends JspException

All Implemented Interfaces. javaio.Seridizable

Description

Exception to indicate the calling page must cease evaluation. Thrown by asimple
tag handler to indicate that the remainder of the page must not be evaluated. The
result is propagated back to the pagein the case where one tag invokes another (as
can be the case with tag files). The effect is similar to that of a Classic Tag Han-
dler returning Tag.SKI1P_PAGE from doEndTag(). Jsp Fragments may also throw
this exception. This exception should not be thrown manually in a JSP page or tag
file - the behavior is undefined. The exception is intended to be thrown inside
SimpleTag handlers and in JSP fragments.

Since: 2.0

See Also: public void doTag(), public abstract void invoke(java.io.Writer
out), public int doEndTag()

JSP.12.4.3.1 Constructors
public SkipPageException()
Creates a SkipPageException with no message.

public SkipPageException(java.lang.String message)

JavaServer Pages 2.0 Specification

2-48 CORE AP

Creates a SkipPageException with the provided message.

Parameters:
message - the detail message

public SkipPageException(java.lang.String message,
java.lang.Throwable rootCause)

Creates a SkipPageException with the provided message and root cause.

Parameters:
message - the detail message

rootCause - the originating cause of this exception
public SkipPageException(java.lang.Throwable rootCause)

Creates a SkipPageException with the provided root cause.

Parameters:
rootCause - the originating cause of this exception

JavaServer Pages 2.0 Specification

cuneren JOP. 13

Tag Extension AP

T his chapter describes the details of tag handlers and other tag extension
classes aswell as methods that are available to access the Tag Library Descriptor
files. This complements a previous chapter that described the Tag Library Descrip-
tor filesformats and their use in taglib directives.

This chapter includes content that is generated automatically from javadoc
embedded into the actual Java classes and interfaces. This allows the creation of a
single, authoritative, specification document.

Custom actions can be used by JSP authors and authoring tools to simplify
writing JSP pages. A custom action can be either an empty or a non-empty action.

An empty tag has no body. There are two equivalent syntaxes, one with
separate start and an end tag, and one where the start and end tags are combined.
The two following examples are identical:

<x:foo att="myObject” />

<x:foo att="myObject” ></foo>

A non-empty tag has agtart tag, abody, and an end tag. A prototypical example
isof theform:

<x:foo att="myObject” >

BODY

</x:foo/>

The JavaServer Pages(tm) (JSP) 1.2 specification provides a portable mecha
nism for the description of tag libraries containing:

*A Tag Library Descriptor (TLD)

A number of Tag handler classes defining request-time behavior
A number of classes defining trandlation-time behavior
«Additional resources used by the classes

This chapter is organized in three sections. The first section presents the basic
tag handler classes. The second section describes the more complex tag handlers
that need to access their body evaluation. The last section looks at trangdlation-time

issues.

2-49

2-50

TAG EXTENSION API

JSP.13.1 Classic Tag Handlers

This section introduces the notion of atag handler and describes the classic
types of tag handler.

JSP 2.0 introduces a new type of Tag Handler called a Simple Tag Handler,
which is described in alater section in this chapter. The protocol for Simple Tag
handlers is much more straightforward.

Tag Handler

A tag handler is arun-time, container-managed, object that evaluates custom
actions during the execution of a JSP page. A tag handler supports a protocol that
allows the JSP container to provide good integration of the server-side actions
within a JSP page.

A tag handler is created initially using a zero argument constructor on its
corresponding class; the method java.beans.Beans.instantiate() is not used.

A tag handler has some properties that are exposed to the page as attributes on
an action; these properties are managed by the JSP container (viagenerated code).
The setter methods used to set the properties are discovered using the JavaBeans
introspector machinery.

The protocol supported by atag handler provides for passing of parameters,
the evaluation and reevaluation of the body of the action, and for getting accessto
objects and other tag handlers in the JSP page.

A tag handler instance is responsible for processing onerequest at atime. It is
the responsability of the JSP container to enforce this.

Additional translation time information associated with the action indicates
the name of any scripting variables it may introduce, their types and their scope.
At specific moments, the JSP container will automatically synchronize the Page-
Context information with variables in the scripting language so they can be made
available directly through the scripting elements.

Properties

A tag handler has some properties. All tag handlers have a pageContext prop-
erty for the JSP page where the tag is located, and a parent property for the tag han-
dler to the closest enclosing action. Specific tag handler classes may have additional
properties.

All attributes of a custom action must be JavaBeans component properties,
although some properties may not be exposed as attributes. The attributes that are
visible to the JSP trandator are exactly those listed in the Tag Library Descriptor
(TLD).

JavaServer Pages 2.0 Specification

Classic Tag Handlers

All properties of atag handler instance exposed as attributeswill beinitialized
by the container using the appropriate setter methods before the instance can be
used to perform the action methods. It is the responsibility of the JSP container to
invoke the appropriate setter methods to initialize these properties. It isthe
responsability of user code, beit scriptlets, JavaBeans code, or code inside custom
tags, to not invoke these setter methods, as doing otherwise would interfere with
the container knowledge.

The setter methods that should be used when assigning a value to an attribute
of a custom action are determined by using the JavaBeans introspector on the tag
handler class, then use the setter method associated with the property that has the
same name as the attribute in question. An implication (unclear in the JavaBeans
specification) isthat there is only one setter per property.

Unspecified attributes/properties should not be set (using a setter method).

Once properly set, all properties are expected to be persistent, so that if the
JSP container ascertains that a property has already been set on a given tag
handler instance, it must not set it again.

The JSP container may reuse classic tag handler instances for multiple
occurrences of the corresponding custom action, in the same page or in different
pages, but only if the same set of attributes are used for all occurrences. If atag
handler isused for more than one occurence, the container must reset all attributes
where the values differ between the custom action occurrences. Attributes with
the same value in all occurrences must not be reset. If an attribute value isset as a
regquest-time attribute value (using a scripting or an EL expression), the container
must reset the attribute between all reuses of the tag handler instance.

User code can access property information and access and modify tag handler
internal state starting with the first action method (doStartTag) up until the last
action method (doEndTag or doFinally for tag handlers implementing TryCatch-
Finaly).

Tag Handler asa Container-M anaged Object

Since atag handler is a container managed object, the container needs to main-
tain itsreferences; specifically, user code should not keep referencesto atag handler
except between the start of the first action method (doStartTag()) and the end of the
last action method (doEndTag() or doFinally() for those tags that implement Try-
CatchFinaly).

The restrictions on references to tag handler objects and on modifying
attribute properties gives the JSP container substantial freedom in effectively
managing tag handler objects to achieve different goals. For example, a container
may implementing different pooling strategies to minimize creation cost, or may

JavaServer Pages 2.0 Specification

2-51

2-52

TAG EXTENSION API

hoist setting of properties to reduce cost when atag handler is inside another
iterative tag.

Conversions

A tag handler implements an action; the JSP container must follow the type
conversions described in Section 2.13.2 when assigning valuesto the attributes of an
action.

Empty and Non-Empty Actions

An empty action has no body; it may use one of two syntaxes: either <foo/> or
<foo></foo>. Since empty actions have no body the methods related to body manip-
ulation are not invoked. There isamechanism in the Tag Library Descriptor to indi-
cate that atag can only be used to write empty actions; when used, non-empty
actions using that tag will produce atrandation error.

A non-empty action has a body.

The Tag I nterface

A Tag handler that does not want to processits body can implement just the Tag
interface. A tag handler may not want to process its body because it is an empty tag
or because the body isjust to be “passed through”.

The Tag interface includes methods to provide page context information to the
Tag Handler instance, methods to handle the life-cycle of tag handlers, and two
main methods for performing actions on atag: doStartTag() and doEndTag(). The
method doStartTag() isinvoked when encountering the start tag and its return value
indicates whether the body (if there is any) should be skipped, or evaluated and
passed through to the current response stream. The method doEndTag() is invoked
when encountering the end tag; its return value indicates whether the rest of the
page should continue to be evaluated or not.

If an exception is encountered during the evaluation of the body of atag, its
doEndTag method will not be evaluated. See the TryCatchFinally tag for methods
that are guaranteed to be evaluated.

ThelterationTag I nterface

The IterationTag interface is used to repeatedly reevaluate the body of acustom
action. The interface has one method: doAfterBody() which isinvoked after each
evaluation of the body to determine whether to reevaluate or not.

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be
BodyTag.EVAL_BODY_TAG. That constant valueis still kept in JSP 1.2 (for full
backwards compatibility) but, to improve clarity, a new nameis also available:

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-53

IterationTag.EVAL_BODY _AGAIN. To stop iterating, the returned value should
be 0, which is Tag.SKIP_BODY.

The TagSupport Base Class
The TagSupport classis a base class that can be used when implementing the
Tag or IterationTag interfaces.

JSP.13.11 JspTag

Syntax
public interface JspTag

All Known Subinterfaces. BodyTag, IterationTag, SimpleTag, Tag

Description
Serves as a base class for Tag and SimpleTag. This is mostly for organizational
and type-safety purposes.

Since: 2.0

JSP.13.1.2 Tag

Syntax

public interface Tag extends JspTag

All Known Subinterfaces. BodyTag, IterationTag
All Superinterfaces. JspTag
All Known Implementing Classes. TagAdapter

Description

The interface of a classic tag handler that does not want to manipulate its body.
The Tag interface defines the basic protocol between a Tag handler and JSP page
implementation class. It defines the life cycle and the methods to be invoked at
start and end tag.

Properties

JavaServer Pages 2.0 Specification

TAG EXTENSION API

The Tag interface specifies the setter and getter methods for the core pageContext
and parent properties.

The JSP page implementation object invokes setPageContext and setParent, in
that order, before invoking doStartTag() or doEndTag().

Methods

There are two main actions. doStartTag and doEndTag. Once al appropriate
properties have been initialized, the doStartTag and doEndTag methods can be
invoked on the tag handler. Between these invocations, the tag handler is assumed
to hold a state that must be preserved. After the doEndTag invocation, the tag han-
dier is available for further invocations (and it is expected to have retained its
properties).

Lifecycle

Lifecycle details are described by the transition diagram below, with the follow-
ing comments:
*[1] Thistransition is intended to be for releasing long-term data. no guaran-
tees are assumed on whether any properties have been retained or not.
*[2] Thistransition happensif and only if the tag ends normally without rais-
ing an exception
*[3] Some setters may be called again before a tag handler is reused. For
instance, setParent() is called if it's reused within the same page but at a dif-
ferent level, setPageContext() is called if it's used in another page, and
attribute setters are called if the values differ or are expressed as reguest-time
attribute values.
*Check the TryCatchFinally interface for additional details related to excep-
tion handling and resource management.

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-55

MNIT PEOTOCOL

Tj
Properties have Propetties have
Diefanlt walues Urndefired walues

L] Properties [mtialized

pageContext, parent,
/v and AttSet

do Start Tag()

doEnd Tagl) LFTER

doStartTag

Once al invocations on the tag handler are completed, the release method is
invoked on it. Once a release method is invoked all properties, including parent
and pageContext, are assumed to have been reset to an unspecified value. The
page compiler guarantees that release() will be invoked on the Tag handler before
the handler isreleased to the GC.

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an
empty action, by an <body-content> entry of “empty”, then the doStartTag()
method must return SKIP_BODY.

Otherwise, the doStartTag() method may return SKIP BODY or
EVAL_BODY_INCLUDE.

JavaServer Pages 2.0 Specification

2-56 TAG EXTENSION API

If SKIP_BODY isreturned the body, if present, is not evaluated.

If EVAL_BODY_INCLUDE is returned, the body is evaluated and *“passed
through” to the current out.

JSP.13.1.21 Fieds
public static final int EVAL_BODY_INCLUDE
Evaluate body into existing out stream. Valid return value for doStartTag.
public static final int EVAL_PAGE
Continue evaluating the page. Valid return value for doEndTag().
public static final int SKIP_BODY
Skip body evaluation. Valid return value for doStartTag and doAfterBody.
public static final int SKIP_PAGE
Skip the rest of the page. Valid return value for doEndTag.

JSP.13.1.2.2 Methods
public int doEndTag()

Process the end tag for thisinstance. This method isinvoked by the JSP page
implementation object on all Tag handlers.

This method will be called after returning from doStartTag. The body of the
action may or may not have been evaluated, depending on the return value of
doStartTag.

If this method returns EVAL_PAGE, the rest of the page continuesto be eval-
uated. If this method returns SKIP_PAGE, the rest of the page is not evalu-
ated, the request is completed, and the doEndTag() methods of enclosing tags
are not invoked. If this request was forwarded or included from another page
(or Servlet), only the current page evaluation is stopped.

The JSP container will resynchronize the values of any AT_BEGIN and
AT_END variables (defined by the associated TagExtralnfo or TLD) after the
invocation of doEndTag().

Returns; indication of whether to continue evaluating the JSP page.

Throws:
JspException - if an error occurred while processing this tag

public int doStartTag()

Process the start tag for thisinstance. This method isinvoked by the JSP page
implementation object.

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-57

The doStartTag method assumes that the properties pageContext and parent
have been set. It also assumes that any properties exposed as attributes have
been set too. When this method isinvoked, the body has not yet been evalu-
ated.

This method returns Tag.EVAL_BODY _INCLUDE or Body-
Tag.EVAL_BODY_BUFFERED to indicate that the body of the action
should be evaluated or SKIP_BODY to indicate otherwise.

When a Tag returns EVAL_BODY _INCLUDE the result of evaluating the
body (if any) isincluded into the current “out” JspWriter as it happens and
then doEndTag() is invoked.

BodyTag.EVAL_BODY_BUFFERED isonly valid if the tag handler imple-
ments BodyTag.

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtralnfo or TLD) after the
invocation of doStartTag(), except for atag handler implementing BodyTag
whose doStartTag() method returns BodyTag.EVAL_BODY_BUFFERED.

Returns: EVAL_BODY_INCLUDE if the tag wants to process body,
SKIP_BODY if it does not want to processit.

Throws:
JspException - if an error occurred while processing this tag

See Also: BodyTag
public Tag getParent()
Get the parent (closest enclosing tag handler) for this tag handler.

The getParent() method can be used to navigate the nested tag handler struc-
ture at runtime for cooperation among custom actions; for example, the find-
AncestorWithClass() method in TagSupport provides a convenient way of
doing this.

The current version of the specification only provides one formal way of indi-
cating the observable type of atag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. Thisis
extended in an informal manner by allowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, asin the case of the JSP standard tag library.

Returns: the current parent, or null if none.

See Also: public static final Tag findAncestorWithClass(Tag from,
javalang.Class klass)

JavaServer Pages 2.0 Specification

2-58 TAG EXTENSION API

public void release()

Called on a Tag handler to release state. The page compiler guarantees that
JSP page implementation objects will invoke this method on all tag handlers,
but there may be multiple invocations on doStartTag and doEndTag in
between.

public void setPageContext(PageContext pc)

Set the current page context. This method is invoked by the JSP page imple-
mentation object prior to doStartTag().

Thisvalueis*not* reset by doEndTag() and must be explicitly reset by a
page implementation if it changes between calls to doStartTag().

Parameters:
pc - The page context for this tag handler.

public void setParent(Tag t)

Set the parent (closest enclosing tag handler) of this tag handler. Invoked by
the JSP page implementation object prior to doStartTag().

Thisvalueis*not* reset by doEndTag() and must be explicitly reset by a
page implementation.

Parameters:
t - The parent tag, or null.

JSP.13.1.3 IterationTag

Syntax

public interface IterationTag extends Tag

All Known Subinterfaces. BodyTag
All Superinterfaces: JspTag, Tag
All Known Implementing Classes. TagSupport

Description

The IterationTag interface extends Tag by defining one additional method that
controls the reevaluation of its body.

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-59

A tag handler that implements IterationTag is treated as one that implements Tag
regarding the doStartTag() and doEndTag() methods. IterationTag provides a new
method: doAfterBody().

The doAfterBody() method is invoked after every body evaluation to control
whether the body will be reevaluated or not. If doAfterBody() returns Iteration-
Tag.EVAL_BODY_AGAIN, then the body will be reevaluated. If doAfterBody()
returns Tag.SKIP_BODY, then the body will be skipped and doEndTag() will be
evaluated instead.

Properties There are no new properties in addition to those in Tag.
M ethods There is one new methods: doAfterBody().
Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), BODY and doAfterBody()
interrupt the execution sequence and are propagated up the stack, unless the tag
handler implements the TryCatchFinally interface; see that interface for details.

IT PEOTOCOL

AttSet is
//’ initialized \

EndT do Start Tagi

LFTEE.
Ao End T doStartTag o

BODY EVAL

— a
LEFTER. AFTER. [,
doktterBody BODY
Fq,_____

do After o)

JavaServer Pages 2.0 Specification

2-60

TAG EXTENSION API

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must aways have an
empty element body, by a <body-content> entry of “empty”, then the doStart-
Tag() method must return SKIP_BODY.

Note that which methods are invoked after the doStartTag() depends on both the
return value and on if the custom action element is empty or not in the JSP page,
not on how it's declared in the TLD.

If SKIP_BODY is returned the body is not evaluated, and then doEndTag() is
invoked.

If EVAL_BODY_INCLUDE is returned, and the custom action element is not
empty, the body is evaluated and “passed through” to the current out, then
doAfterBody() is invoked and, after zero or more iterations, doEndTag() is
invoked.

JSP.13.1.3.1 Fields

public static final int EVAL_BODY_AGAIN

Request the reevaluation of some body. Returned from doAfterBody. For
compatibility with JSP 1.1, the value is carefully selected to be the same as
the, now deprecated, BodyTag.EVAL_BODY_TAG,

JSP.13.1.3.2 Methods

public int doAfterBody()

Process body (re)evaluation. This method is invoked by the JSP Page imple-
mentation object after every evaluation of the body into the BodyEvaluation
object. The method is not invoked if there is no body evaluation.

If doAfterBody returns EVAL_BODY _AGAIN, anew evaluation of the body
will happen (followed by another invocation of doAfterBody). If doAfter-
Body returns SKI1P_BODY, no more body evaluations will occur, and the
doEndTag method will be invoked.

If this tag handler implements Body Tag and doAfterBody returns
SKIP_BODY, the value of out will be restored using the popBody method in
pageContext prior to invoking doEndTag.

The method re-invocations may be lead to different actions because there
might have been some changes to shared state, or because of external compu-
tation.

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-61

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtralnfo or TLD) after the
invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws:
JspException - if an error occurred while processing this tag

JSP.13.1.4 TryCatchFinally

Syntax
public interface TryCatchFinally

Description

The auxiliary interface of a Tag, IterationTag or BodyTag tag handler that wants
additional hooks for managing resources.

This interface provides two new methods. doCatch(Throwable) and doFinaly().
The prototypical invocation is as follows:

h = get a Tag(); // get a tag handler, perhaps from pool

h.setPageContext(pc); // initialize as desired

h.setParent(null);

h.setFoo(“foo”);

// tag invocation protocol; see Tag.java
try {
doStartTag()...

doEndTag()...

} catch (Throwable t) {
Il react to exceptional condition
h.doCatch(t);

} finally {
// restore data invariants and release per-invocation resources

h.doFinally();

... other invocations perhaps with some new setters

h.release(); // release long-term resources

JSP.13.1.4.1 Methods
public void doCatch(java.lang.Throwable t)

JavaServer Pages 2.0 Specification

2-62

TAG EXTENSION API

Invoked if a Throwable occurs while evaluating the BODY inside atag or in
any of the following methods. Tag.doStartTag(), Tag.doEndTag(), Iteration-
Tag.doAfterBody() and BodyTag.dol nitBody().

This method is not invoked if the Throwable occurs during one of the setter
methods.

This method may throw an exception (the same or a new one) that will be
propagated further up the nest chain. If an exception isthrown, doFinally()
will be invoked.

This method is intended to be used to respond to an exceptional condition.

Parameters:
t - The throwable exception navigating through this tag.

Throws:
Throwable - if the exception isto be rethrown further up the nest chain.

public void doFinally()

Invoked in al cases after doEndTag() for any class implementing Tag,
IterationTag or BodyTag. This method is invoked even if an exception has
occurred in the BODY of the tag, or in any of the following methods:
Tag.doStartTag(), Tag.doEndTag(), IterationTag.doAfterBody() and Body-
Tag.dolnitBody().

This method is not invoked if the Throwable occurs during one of the setter
methods.

This method should not throw an Exception.

This method is intended to maintain per-invocation data integrity and
resource management actions.

JSP.13.15 TagSupport

Syntax
public class TagSupport implements IterationTag, java.io.Serializable

Direct Known Subclasses: BodyTagSupport

All Implemented Interfaces. IterationTag, JspTag, javaio.Seridizable,

Tag

Description
A base class for defining new tag handlers implementing Tag.

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-63

The TagSupport class is a utility class intended to be used as the base class for
new tag handlers. The TagSupport class implements the Tag and IterationTag
interfaces and adds additional convenience methods including getter methods for
the properties in Tag. TagSupport has one static method that is included to facili-
tate coordination among cooperating tags.

Many tag handlers will extend TagSupport and only redefine afew methods.

JSP.13.15.1 Fields
protected java.lang.String id
The value of theid attribute of thistag; or null.
protected PageContext pageContext
The PageContext.

JSP.13.1.5.2 Constructors
public TagSupport()

Default constructor, all subclasses are required to define only a public con-
structor with the same signature, and to call the superclass constructor. This
constructor is called by the code generated by the JSP translator.

JSP.13.1.53 Methods
public int doAfterBody()
Default processing for a body.
Returns: SKIP_BODY

Throws:
JspException - if an error occurs while processing thistag

See Also: public int doAfterBody()

public int doEndTag()
Default processing of the end tag returning EVAL_PAGE.
Returns. EVAL_PAGE

Throws:
JspException - if an error occurs while processing thistag

See Also: publicint doEndTag()
public int doStartTag()
Default processing of the start tag, returning SKIP_BODY.

JavaServer Pages 2.0 Specification

TAG EXTENSION API

Returns: SKIP_BODY

Throws:
JspException - if an error occurs while processing this tag

See Also: publicint doStartTag()
public static final Tag findAncestorWithClass(Tag from, java.lang.Class klass)

Find the instance of agiven classtypethat is closest to a given instance. This
method uses the getParent method from the Tag interface. This method is
used for coordination among cooperating tags.

The current version of the specification only provides one formal way of indi-
cating the observable type of atag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. Thisis
extended in an informal manner by alowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, asin the case of the JSP standard tag library.

When atag library author provides information on the observable type of a
tag handler, client programmatic code should adhere to that constraint. Spe-
cifically, the Class passed to findAncestorWithClass should be a subtype of
the observable type.

Parameters:
from - The instance from where to start looking.

klass - The subclass of Tag or interface to be matched

Returns: the nearest ancestor that implementsthe interface or isan instance
of the class specified

public java.lang.String getld()
The value of the id attribute of thistag; or null.
Returns: thevalue of theid attribute, or null
public Tag getParent()
The Tag instance most closely enclosing this tag instance.
Returns. the parent tag instance or null
See Also: public Tag getParent()
public java.lang.Object getValue(java.lang.String k)
Get athe value associated with akey.
Parameters:

JavaServer Pages 2.0 Specification

Classic Tag Handlers 2-65

k - The string key.

Returns: The value associated with the key, or null.
public java.util. Enumeration getValues()

Enumerate the keys for the values kept by this tag handler.

Returns: Anenumeration of al the keys for the values set, or null or an
empty Enumeration if no values have been set.

public void release()
Release state.
See Also: public void release()
public void removeValue(java.lang.String k)
Remove a value associated with a key.

Parameters:
k - The string key.

public void setld(java.lang.String id)
Set the id attribute for this tag.

Parameters:
id - The String for theid.

public void setPageContext(PageContext pageContext)
Set the page context.

Parameters:
pageContext - The PageContext.

See Also: public void setPageContext(PageContext pc)
public void setParent(Tag t)
Set the nesting tag of thistag.

Parameters:
t - The parent Tag.

See Also: public void setParent(Tag t)
public void setValue(java.lang.String k, java.lang.Object 0)
Associate avalue with a String key.

Parameters:
k - The key String.

o - The value to associate.

JavaServer Pages 2.0 Specification

2-66 TAG EXTENSION API

JSP.13.2 Tag Handlersthat want Accessto their Body
Content

The evaluation of abody is delivered into a BodyContent object. Thisisthen
made available to tag handlers that implement the BodyTag interface. The BodyTag-
Support class provides auseful base class to smplify writing these handlers.

If a Tag handler wants to have access to the content of its body then it must
implement the BodyTag interface. Thisinterface extends IterationTag, provides
two additional methods setBodyContent(BodyContent) and dolnitBody() and refersto
an object of type BodyContent.

A BodyContent is asubclass of Jspwriter that has a few additional methods to
convert its contentsinto a String, insert the contents into another JspWriter, to get
aReader into its contents, and to clear the contents. Its semantics also assure that
buffer size will never be exceeded.

The JSP page implementation will create a BodyContent if the doStartTag()
method returns a EVAL_BODY _BUFFERED. This object will be passed to
dolnitBody(); then the body of the tag will be evaluated, and during that
evaluation out will be bound to the BodyContent just passed to the BodyTag
handler. Then doAfterBody() will be evaluated. If that method returns
SKIP_BODY, no more evaluations of the body will be done; if the method returns
EVAL_BODY_AGAIN, then the body will be evaluated, and doAfterBody() will
be invoked again.

The content of a BodyContent instance remains available until after the
invocation of its associated doEndTag() method.

A common use of the BodyContent is to extract its contentsinto a String and
then use the String as a value for some operation. Another common use is to take
its contents and push it into the out Stream that was valid when the start tag was
encountered (that is available from the PageContext object passed to the handler
in setPageContext).

JSP.13.2.1 BodyContent

Syntax
public abstract class BodyContent extends JspWriter

Description

An encapsulation of the evaluation of the body of an action so it is available to a
tag handler. BodyContent is a subclass of JspWiriter.

JavaServer Pages 2.0 Specification

Tag Handlers that want Access to their Body Content 2-67

Note that the content of BodyContent isthe result of evaluation, so it will not con-
tain actions and the like, but the result of their invocation.

BodyContent has methods to convert its contents into a String, to read its con-
tents, and to clear the contents.

The buffer size of a BodyContent object is unbounded. A BodyContent object
cannot be in autoFlush mode. It is not possible to invoke flush on a BodyContent
object, asthere is no backing stream.

Instances of BodyContent are created by invoking the pushBody and popBody
methods of the PageContext class. A BodyContent is enclosed within another
JspWriter (maybe another BodyContent object) following the structure of their
associated actions.

A BodyContent is made available to a BodyTag through a setBodyContent() call.
The tag handler can use the object until after the call to doEndTag().

JSP.13.2.1.1 Constructors
protected BodyContent(JspWriter e)
Protected constructor. Unbounded buffer, no autoflushing.

Parameters:
e - the enclosing JspWriter

JSP.13.21.2 Methods
public void clearBody()
Clear the body without throwing any exceptions.
public void flush()
Redefined flush() so it is not legal.

It isnot valid to flush a BodyContent because there is no backing stream
behind it.

Overrides. public abstract void flush() in class JspWriter

Throws:
IOException - always thrown

public JspWriter getEnclosingWriter()

Get the enclosing JspWriter.

Returns: the enclosing JspWriter passed at construction time
public abstract java.io.Reader getReader()

Return the value of this BodyContent as a Reader.
JavaServer Pages 2.0 Specification

2-68 TAG EXTENSION API

Returns: the value of this BodyContent as a Reader
public abstract java.lang.String getString()

Return the value of the BodyContent as a String.

Returns: the value of the BodyContent as a String
public abstract void writeOut(java.io.Writer out)

Write the contents of this BodyContent into a Writer. Subclasses may opti-
mize common invocation patterns.

Parameters:
out - The writer into which to place the contents of this body evaluation

Throws:
IOException - if an /O error occurred while writing the contents of this
BodyContent to the given Writer

JSP.1322 BodyTag

Syntax
public interface BodyTag extends lterationTag

All Superinterfaces. IterationTag, JspTag, Tag
All Known Implementing Classes. BodyTagSupport

Description

The BodyTag interface extends IterationTag by defining additional methods that
let atag handler manipulate the content of evaluating its body.

It is the responsibility of the tag handler to manipulate the body content. For
example the tag handler may take the body content, convert it into a String using
the bodyContent.getString method and then use it. Or the tag handler may take
the body content and write it out into its enclosing JspWriter using the body-
Content.writeOut method.

A tag handler that implements BodyTag is treated as one that implements
IterationTag, except that the doStartTag method can return SKIP_BODY,
EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED.

If EVAL_BODY_INCLUDE is returned, then evaluation happens as in Iteration-
Tag.

JavaServer Pages 2.0 Specification

Tag Handlers that want Access to their Body Content 2-69

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be
created (by code generated by the JSP compiler) to capture the body evaluation.
The code generated by the JSP compiler obtains the BodyContent object by call-
ing the pushBody method of the current pageContext, which additionally has the
effect of saving the previous out value. The page compiler returns this object by
calling the popBody method of the PageContext class; the call also restores the
value of out.

The interface provides one new property with a setter method and one new action
method.

Properties

There is anew property: bodyContent, to contain the BodyContent object, where
the JSP Page implementation object will place the evaluation (and reevaluation, if
appropriate) of the body. The setter method (setBodyContent) will only be
invoked if doStartTag() returns EVAL_BODY_BUFFERED and the correspond-
ing action element does not have an empty body.

M ethods

In addition to the setter method for the bodyContent property, there is a new
action method: dolnitBody(), which is invoked right after setBodyContent() and
before the body evaluation. This method is only invoked if doStartTag() returns
EVAL_BODY_BUFFERED.

Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), setBodyContent(), dolnit-
Body(), BODY, doAfterBody() interrupt the execution sequence and are propa-
gated up the stack, unless the tag handler implements the TryCatchFinally
interface; see that interface for details.

JavaServer Pages 2.0 Specification

2-70

TAG EXTENSION API

INIT PEOTOCOL

LttSet 1

//' initialized \
EndT dnStart}lgﬂ
AFTER,

doEndTagyy | doStartTag

LFTER.
setBodyContent

dnIndt Brody)

LFTER.
dolratBody

BEODW

BODY EWAL

— a

LETER. AFTER. |

do b fterBodsy BODY
H,_____

dndiiterBadyt’)

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must aways have an
empty element body, by an <body-content> entry of “empty”, then the doStart-
Tag() method must return SKIP_BODY. Otherwise, the doStartTag() method may
return SKIP_BODY, EVAL_BODY _INCLUDE, or EVAL_BODY_BUFFERED.

Note that which methods are invoked after the doStartTag() depends on both the
return value and on if the custom action element is empty or not in the JSP page,
not how it's declared in the TLD.

If SKIP_BODY isreturned the body is not evaluated, and doEndTag() isinvoked.

If EVAL_BODY _INCLUDE is returned, and the custom action element is not
empty, setBodyContent() is not invoked, dolnitBody() is not invoked, the body is

JavaServer Pages 2.0 Specification

Tag Handlers that want Access to their Body Content

evaluated and “passed through” to the current out, doAfterBody() is invoked and
then, after zero or more iterations, doEndTag() is invoked. If the custom action
element is empty, only doStart() and doEndTag() are invoked.

If EVAL_BODY_BUFFERED is returned, and the custom action element is not
empty, setBodyContent() is invoked, dolnitBody() is invoked, the body is evalu-
ated, doAfterBody() is invoked, and then, after zero or more iterations, doEnd-
Tag() is invoked. If the custom action element is empty, only doStart() and
doEndTag() areinvoked.

JSP.13.2.21 Fields
public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the
body of thistag. Returned from doStartTag when it implements BodyTag.
Thisisanillega return value for doStartTag when the class does not imple-
ment BodyTag.

public static final int EVAL_BODY_TAG
Deprecated. Asof JavaJSP API 1.2, use

BodyTag.EVAL_BODY_BUFFERED or
IterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same value as EVAL_BODY_BUFFERED
and EVAL_BODY_AGAIN. This name has been marked as deprecated to
encourage the use of the two different terms, which are much more descrip-
tive.

JSP.13.2.2.2 Methods
public void dolnitBody()

Prepare for evaluation of the body. This method is invoked by the JSP page
implementation object after setBodyContent and before the first time the
body isto be evaluated. This method will not be invoked for empty tags or for
non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtralnfo or TLD) after the
invocation of dolnitBody().

Throws:
JspException - if an error occurred while processing this tag

See Also: public int doAfterBody()
public void setBodyContent(BodyContent b)

JavaServer Pages 2.0 Specification

2-71

2-72

TAG EXTENSION API

Set the bodyContent property. This method isinvoked by the JSP page imple-
mentation object at most once per action invocation. This method will be
invoked before dolnitBody. This method will not be invoked for empty tags
or for non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

When setBodyContent is invoked, the value of the implicit object out has
already been changed in the pageContext object. The BodyContent object
passed will have not data on it but may have been reused (and cleared) from
some previous invocation.

The BodyContent object is available and with the appropriate content until
after the invocation of the doEndTag method, at which case it may be reused.

Parameters:
b - the BodyContent

See Also: public void dolnitBody(), public int doAfterBody()

JSP.13.2.3 BodyTagSupport

Syntax
public class BodyTagSupport extends TagSupport implements BodyTag

All Implemented Interfaces. BodyTag, IterationTag, JspTag, java.io.Seri-
aizable, Tag

Description

A base class for defining tag handlers implementing BodyTag.

The BodyTagSupport class implements the BodyTag interface and adds addi-
tional convenience methods including getter methods for the bodyContent prop-
erty and methods to get at the previous out JspWriter.

Many tag handlers will extend Body TagSupport and only redefine afew methods.

JSP.13.23.1 Fidds
protected BodyContent bodyContent
The current BodyContent for this BodyTag.

JSP.13.2.3.2 Constructors
public BodyTagSupport()

JavaServer Pages 2.0 Specification

Tag Handlers that want Access to their Body Content 2-73

Default constructor, all subclasses are required to only define a public con-
structor with the same signature, and to call the superclass constructor. This
constructor is called by the code generated by the JSP trandlator.

JSP.13.2.3.3 Methods
public int doAfterBody()

After the body evaluation: do not reevaluate and continue with the page. By
default nothing is done with the bodyContent data (if any).

Overrides: publicint doAfterBody() in class TagSupport
Returns: SKIP_BODY

Throws:
JspException - if an error occurred while processing this tag

See Also: public void dolnitBody(), public int doAfterBody()
public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Overrides. public int doEndTag() in class TagSupport

Returns: EVAL_PAGE

Throws:
JspException - if an error occurred while processing this tag

See Also: publicint doEndTag()
public void dolnitBody()

Prepare for evaluation of the body just before the first body evaluation: no
action.

Throws:
JspException - if an error occurred while processing this tag

See Also: public void setBodyContent(BodyContent b), public int
doAfterBody(), public void dolnitBody()

public int doStartTag()
Default processing of the start tag returning EVAL_BODY_BUFFERED.
Overrides. publicint doStartTag() in class TagSupport
Returns: EVAL_BODY_BUFFERED

Throws:
JspException - if an error occurred while processing this tag

See Also: publicint doStartTag()

JavaServer Pages 2.0 Specification

2-74

TAG EXTENSION API

public BodyContent getBodyContent()
Get current bodyContent.
Returns. the body content.
public JspWriter getPreviousOut()
Get surrounding out JspWriter.
Returns: the enclosing JspWriter, from the bodyContent.
public void release()
Release state.
Overrides. public void release() in class TagSupport
See Also: public void release()
public void setBodyContent(BodyContent b)
Prepare for evaluation of the body: stash the bodyContent away.

Parameters:
b - the BodyContent

See Also: publicint doAfterBody(), public void dolnitBody(), public void
setBodyContent(BodyContent b)

JSP.13.3 Dynamic Attributes

Any tag handler can optionally extend the DynamicAttributes interface to indi-
cate that it supports dynamic attributes. In addition to implementing the Dynamic-
Attributes interface, tag handlers that support dynamic attributes must declare that
they do so inthe Tag Library Descriptor.

The TLD iswhat ultimately determines whether atag handler accepts
dynamic attributes or not. If atag handler declaresthat it supports dynamic
attributesin the TLD but it does not implement the DynamicAttributes interface, the
tag handler must be considered invalid by the container.

If the dynamic-attributes element for atag being invoked contains the value
“true”, the following requirements apply:

*For each attribute specified in the tag invocation that does not have a corre-
sponding attribute element in the TLD for thistag, acall must be made to set-
DynamicAttribute(), passing in the namespace of the attribute (or null if the
attribute does not have a namespace or prefix), the name of the attribute with-
out the namespace prefix, and the final value of the attribute.

*Dynamic attributes must be considered to accept regquest-time expression
values.

JavaServer Pages 2.0 Specification

Dynamic Attributes 2-75

eDynamic attributes must be treated as though they were of type
java.lang.Object

*The JSP container must recognize dynamic attributes that are passed to the
tag handler using the <jsp:attribute> standard action.

«|f the setDynamicAttribute() method throws JspException, the doStartTag() or
doTag() method is not invoked for this tag, and the exception must be treated
in the same manner asif it came from aregular attribute setter method.

For a JSP document in either standard or XML syntax, If adynamic attribute
has a prefix that doesn’t map to a namespace, a translation error must occur.
In standard syntax, only namespaces defined using taglib directives are rec-
ognized.

In the following example, assume attributes a and b are declared using the
atribute dement inthe TLD, attributes d1 and d2 are not declared, and the dynamic-
attributes element is set to “true”. The attributes are set using the calls:

esetA(“1"),

esetDynamicAttribute(null, “d1”, “2"),

*setDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d2”, “3"),
ssetB(“4"),

esetDynamicAttribute(null, “d3”, “5”), and

esetDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d4”, “6").

<jsp:root xmIns:mytag="http://www.foo.com/jsp/taglib/mytag.tld” version="2.0">
<mytag:invokeDynamic a="1" d1="2" mytag:d2="3">
<jsp:attribute name="b">4</jsp:attribute>
<jsp:attribute name="d3">5</jsp:attribute>
<jsp:attribute name="mytag:d4">6</jsp:attribute>
</mytag:invokeDynamic>
</jsp:root>

JSP.13.3.1 DynamicAttributes

Syntax
public interface DynamicAttributes

Description

For a tag to declare that it accepts dynamic attributes, it must implement this
interface. The entry for the tag in the Tag Library Descriptor must also be config-
ured to indicate dynamic attributes are accepted.

For any attribute that is not declared in the Tag Library Descriptor for this tag,
instead of getting an error at tranglation time, the setDynamicAttribute() method is
called, with the name and value of the attribute. It is the responsibility of the tag
to remember the names and values of the dynamic attributes.

JavaServer Pages 2.0 Specification

2-76 TAG EXTENSION API

Since: 2.0

JSP.13.3.1.1 Methods

public void setDynamicAttribute(java.lang.String uri, java.lang.String localName,
java.lang.Object value)

Called when atag declared to accept dynamic attributesis passed an attribute
that is not declared in the Tag Library Descriptor.

Parameters:
uri - the namespace of the attribute, or null if in the default namespace.

localName - the name of the attribute being set.
value - the value of the attribute

Throws:
JspException - if the tag handler wishes to signal that it does not accept the
given attribute. The container must not call doStartTag() or doTag() for this

tag.

JSP.13.4 Annotated Tag Handler Management Example

Below is a somewhat complete example of the way one JSP container could
choose to do some tag handler management. There are many other strategies that
could be followed, with different pay offs.

The exampleis as below. In this example, we are assuming that x:iterateisan
iterative tag, while x:doit and x:foobar are smple tag. We will also assume that
X:iterate and x:foobar implement the TryCatchFinally interface, while x:doit does
not.

<x:iterate src="foo">
<x:doit attl="one” att2="<%=1 + 1 %>" />
<x:foobar />
<x:doit attl="one” att2="“<%= 2 + 2 %>" />
</x:iterate>
<x:doit attl="one” att2="<%= 3 + 3 %>" />
The particular code shown bel ow assumes there is some pool of tag handlers

that are managed (details not described, although pool managing is simpler when
there are no optiona attributes), and attemps to reuse tag handlersif possible. The
code also “hoists’ setting of properties to reduce the cost when appropriate, e.g.
inside an iteration.

JavaServer Pages 2.0 Specification

Annotated Tag Handler Management Example 277

boolean b1, b2;
IterationTag i; // for x:iterate
Tag d; // for x:doit
Tag d; // for x:foobar
page: // label to end of page...
// initialize iteration tag
i = get tag from pool or new();
i.setPageContext(pc);
i.setParent(null);
i.setSrc(“foo”);
/I x:iterate implements TryCatchFinally
try {
if (b1 = i.doStartTag()) == EVAL_BODY_INCLUDE) {
// initialize doit tag
/I code has been moved out of the loop for show
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(i);
d.setAtt1(“one”);
loop:
while (1) do {
// I'm ignoring newlines...
I/ two invocations, fused together
// first invocation of x:doit
d.setAtt2(1+1);
if (b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {
// nothing
} else if (b2 1= SKIP_BODY) {
/I Q7 protocol error ...

if (b2 = d.doEndTag()) == SKIP_PAGE) {
break page; // be done with it.

} else if (b2 = EVAL_PAGE) {
/I Q7 protocol error

/I x:foobar invocation
f = get tag from pool or new();
f.setPageContext(pc);
f.setParent(i);
/I x:foobar implements TryCatchFinally

try {

if (b2 = f.doStartTag()) == EVAL_BODY_INCLUDE) {
/I nothing

} else if (b2 I= SKIP_BODY) {
/I Q7 protocol error

if (b2 = f.doEndTag()) == SKIP_PAGE) {
break page; // be done with it.

} else if (b2 '= EVAL_PAGE) {
Il Q7 protocol error

} catch (Throwable t) {

JavaServer Pages 2.0 Specification

2-78

TAG EXTENSION API

f.doCatch(t); // caught, may been rethrown!

} finally {
f.doFinally();

I/ put f back to pool

/I second invocation of x:doit

d.setAtt2(2+2);

if (b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {
// nothing

} else if (b2 != SKIP_BODY) {
/I Q? protocol error

}

if (b2 = d.doEndTag()) == SKIP_PAGE) {
break page; // be done with it.

} else if (b2 1= EVAL_PAGE) {
/I Q? protocol error

}

if (b2 = i.doAfterBody()) == EVAL_BODY_AGAIN) {
break loop;

} else if (b2 != SKIP_BODY) {
/I Q? protocol error

/l'loop

}
} else if (b1 !'= SKIP_BODY) {
/I Q? protocol error

// tail end of the IteratorTag ...

if (b1 = i.doEndTag()) == SKIP_PAGE) {
break page; // be done with it.

} else if (b1 1= EVAL_PAGE) {
/I Q? protocol error

}

/[third invocation

/I this tag handler could be reused from the previous ones.

d = get tag from pool or new();

d.setPageContext(pc);

d.setParent(null);

d.setAtt1(“one”);

d.setAtt2(3+3);

if (b1 = d.doStartTag()) == EVAL_BODY_INCLUDE) {
/I nothing

} else if (b1 != SKIP_BODY) {
/I Q? protocol error

}

if (b1 = d.doEndTag()) == SKIP_PAGE) {
break page; // be done with it.

} else if (b1 = EVAL_PAGE) {
/I Q? protocol error

} catch (Throwable t) {
JavaServer Pages 2.0 Specification

Cooperating Actions 2-79

i.doCatch(t); // caught, may been rethrown!

} finally {
i.doFinally();

JSP.13.5 Cooperating Actions

Actions can cooperate with other actions and with scripting code in anumber of
ways.

PageContext

Often two actions in a JSP page will want to cooperate, perhaps by one action
creating some server-side object that needs to be access by another. One mechanism
for doing thisis by giving the object a name within the JSP page; thefirst action will
create the object and associate the name to it while the second action will use the
name to retrieve the object.

For example, in the following JSP segment the foo action might create a
server-side object and give it the name “myQObject”. Then the bar action might

access that server-side object and take some action.

<x:foo id="myObject” />

<x:bar ref="myObjet” />

In a JSP implementation, the mapping “name’->value is kept by theimplicit
object pageContext. This object is passed around through the Tag handler instances
S0 it can be used to communicate information: al it is needed isto know the name

under which the information is stored into the pageContext.

The Runtime Stack

Analternative to explicit communication of information through anamed object
isimplicit coordination based on syntactic scoping.

For example, in the following JSP segment the foo action might create a
server-side object; later the nested bar action might access that server-side object.
The object is not named within the pageContext: it is found because the specific
foo element is the closest enclosing instance of a known element type.

<foo>
<bar/>
</foo>
This functionality is supported through the TagSupport.findAncestorWwith-

Class(Tag, Class), which uses areference to parent tag kept by each Tag instance,
which effectively provides arun-time execution stack.

JavaServer Pages 2.0 Specification

2-80

TAG EXTENSION API

JSP.13.6 Simple Tag Handlers

This section presents the API to implement Simple Tag Handlers and JSP Frag-
ments. Simple Tag Handlers present a much simpler invocation protocol than do
Classic Tag Handlers.

The Tag Library Descriptor maps tag library declarations to their physical
underlying implementations. A Simple Tag Handler is represented in Java by a
class which implements the SimpleTag interface.

Unlike classic tag handlers, the SimpleTag interface does not extend Tag.
Instead of supporting doStartTag() and doEndTag(), the SimpleTag interface
provides a simple doTag() method, which is called once and only once for any
given tag invocation. All tag logic, iteration, body evaluations, etc. are to be
performed in this single method. Thus, simple tag handlers have the equivalent
power of BodyTag, but with a much simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container
invokes the setJspBody() method with a JspFragment object encapsulating the
body of the tag. The tag handler implementation can call invoke() on that fragment
to evaluate the body. The SimpleTagSupport convenience class provides getJsp-
Body() and other useful methods to make this even easier.

Lifecycle of Simple Tag Handlers

This section describes the lifecycle of simple tag handlers, from creation to
invocation. For all semantics|left unspecified by this section, the semantics default to
that of aclassic tag handler.

When asimple tag handler isinvoked, the following steps occur (in order):

1. Simpletag handlers are created initialy using azero argument constructor on the
corresponding implementation class. Unlike classic tag handlers, thisinstance
must never be pooled by the container. A new instance must be created for each
tag invocation.

2. The setJspContext() and setParent() methods are invoked on the tag handler. The
setParent() method need not be called if the value being passed in is null. In the
case of tag files, a JspContext wrapper is created so that the tag file can appear to
have its own page scope. Calling getJspContext() must return the wrapped Jsp-
Context.

3. The attributes specified as XML element attributes (if any) are evaluated next, in
the order in which they are declared, according to the following rules (referred to
as “evaluating an XML element attribute” below). The appropriate bean property
setter isinvoked for each. If no setter is defined for the specified attribute but the
tag accepts dynamic attributes, the setDynamicAttribute() method isinvoked asthe
Setter.

JavaServer Pages 2.0 Specification

Simple Tag Handlers 2-81

«If the attribute is a scripting expression (e.g. “<%= 1+1 %>" in JSP syntax,
or “%=1+1 %" in XML syntax), the expression is evaluated, and the result is
converted as per the rulesin “ Type Conversions’, and passed to the setter.
*Otherwise, if the attribute contains any Expression Language expressions
(e.g. “Hello ${name}”), the expression is evaluated, and the result is con-
verted and passed to the setter.

*Otherwise, the attribute value is taken verbatim, converted, and passed to the
Setter.

4. The value for each <jsp:attribute> element is evaluated, and the corresponding
bean property setter methods are invoked for each, in the order in which they
appear in the body of the tag. If no setter is defined for the specified attribute but
the tag accepts dynamic attributes, the setDynamicAttribute() method isinvoked as
the setter.

*Otherwise, if the attributeis not of type JspFragment, the container evaluates
the body of the <jsp:attribute> element. This evaluation can be donein acon-
tainer-specific manner. Container implementors should note that in the pro-
cess of evaluating this body, other custom actions may be invoked.
*Otherwise, if the attribute is of type JspFragment, an instance of a Jsp-
Fragment object is created and passed in.
5. The value for the body of the tag is determined, and if abody exists the setJsp-
Body() method is called on the tag handler.

«If the tag is declared to have a body-content of “empty” or no body or an
empty body is passed for this invocation, then setJspBody() is not called.
*Otherwise, the body of the tag is either the body of the <jsp:body> element,
or the body of the custom action invocation if no <jsp:body> or
<jsp:attribute> elements are present. In this case, an instance of a Jsp-
Fragment object is created as per the lifecycle described in the JSP Fragments
section and it is passed to the setter. If the tag is declared to have a body-con-
tent of “tagdependent” the JspFragment must echo the body’s contents verba-
tim. Otherwise, if the tag is declared to have a body-content of type
“scriptless”, the JspFragment must evaluate the body’s contents as a JSP
scriptless body.
6. The doTag() method is invoked.

7. Theimplementation of doTag() performsits function, potentially calling other tag
handlers (if the tag handler isimplemented as atag file) and invoking fragments.

8. The doTag() method returns, and the tag handler instance is discarded. If Skip-
PageException is thrown, the rest of the pageis not evaluated and the request is
completed. If this request was forwarded or included from another page (or Serv-
let), only the current page evaluation stops.

9. For each tag scripting variable declared with scopes AT_BEGIN or AT_END, the
appropriate scripting variables and scoped attributes are declared, as with classic

JavaServer Pages 2.0 Specification

2-82 TAG EXTENSION API
tag handlers.

JSP.13.6.1 SimpleTag

Syntax
public interface SimpleTag extends JspTag

All Superinterfaces. JspTag
All Known Implementing Classes. SimpleTagSupport

Description
Interface for defining Simple Tag Handlers.

Simple Tag Handlers differ from Classic Tag Handlers in that instead of support-
ing doStartTag() and doEndTag(), the SimpleTag interface provides a simple
doTag() method, which is called once and only once for any given tag invocation.
All tag logic, iteration, body evaluations, etc. are to be performed in this single
method. Thus, simple tag handlers have the equivalent power of BodyTag, but
with amuch simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container
invokes the setJspBody() method with a JspFragment object encapsulating the
body of the tag. The tag handler implementation can call invoke() on that fragment
to evaluate the body as many times asit needs.

A SimpleTag handler must have a public no-args constructor. Most SimpleTag
handlers should extend SimpleTagSupport.

Lifecycle

The following is a non-normative, brief overview of the SimpleTag lifecycle.
Refer to the JSP Specification for details.

1. A new tag handler instance is created each time by the container by calling the
provided zero-args constructor. Unlike classic tag handlers, simple tag handlers
are never cached and reused by the JSP container.

2. The setJspContext() and setParent() methods are called by the container. The set-
Parent() method is only called if the element is nested within another tag invoca-
tion.

3. The settersfor each attribute defined for thistag are called by the container.

4. If abody exists, the setJspBody() method is called by the container to set the body
of thistag, as a JspFragment. If the action element is empty in the page, this

JavaServer Pages 2.0 Specification

Simple Tag Handlers 2-83

method is not called at all.

5. ThedoTag() method is called by the container. All tag logic, iteration, body evalu-
ations, etc. occur in this method.

6. The doTag() method returns and al variables are synchronized.
Since: 2.0
See Also: SimpleTagSupport

JSP.13.6.1.1 Methods
public void doTag()

Called by the container to invoke thistag. The implementation of this method
is provided by the tag library developer, and handles al tag processing, body
iteration, etc.

The JSP container will resynchronize any AT_BEGIN and AT_END vari-
ables (defined by the associated tag file, TagExtralnfo, or TLD) after the
invocation of doTag().

Throws:
JspException - If an error occurred while processing this tag.

SkipPageException - If the page that (either directly or indirectly) invoked
thistag isto cease evaluation. A Simple Tag Handler generated from atag file
must throw this exception if an invoked Classic Tag Handler returned
SKIP_PAGE or if aninvoked Simple Tag Handler threw SkipPageException
or if an invoked Jsp Fragment threw a SkipPageException.

java.io.|OException - If there was an error writing to the output stream.
public JspTag getParent()

Returns the parent of thistag, for collaboration purposes.

Returns: the parent of thistag
public void setJspBody(JspFragment jspBody)

Provides the body of thistag as a JspFragment object, able to be invoked zero
or more times by the tag handler.

This method is invoked by the JSP page implementation object prior to
doTag(). If the action element is empty in the page, this method is not called
at all.

Parameters:
jspBody - The fragment encapsulating the body of this tag.

JavaServer Pages 2.0 Specification

TAG EXTENSION API

public void setJspContext(JspContext pc)

Called by the container to provide this tag handler with the JspContext for
this invocation. An implementation should save this value.

Parameters:
pc - the page context for this invocation

See Also: public void setPageContext(PageContext pc)
public void setParent(JspTag parent)
Sets the parent of thistag, for collaboration purposes.

The container invokes this method only if thistag invocation is nested within
another tag invocation.

Parameters:
parent - the tag that encloses this tag

JSP.13.6.2 SimpleTagSupport

Syntax
public class SimpleTagSupport implements SimpleTag

All Implemented Interfaces. JspTag, SimpleTag

Description
A base class for defining tag handlers implementing SimpleTag.

The SimpleTagSupport classisautility class intended to be used as the base class
for new simple tag handlers. The SimpleTagSupport class implements the
SimpleTag interface and adds additional convenience methods including getter
methods for the propertiesin SimpleTag.

Since: 2.0

JSP.13.6.2.1 Constructors
public SimpleTagSupport()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.6.2.2 Methods
public void doTag()

JavaServer Pages 2.0 Specification

Simple Tag Handlers

Default processing of the tag does nothing.

Throws:
JspException - Subclasses can throw JspEXxception to indicate an error
occurred while processing this tag.

SkipPageException - If the page that (either directly or indirectly) invoked
thistag isto cease evaluation. A Simple Tag Handler generated from atag file
must throw this exception if an invoked Classic Tag Handler returned
SKIP_PAGE or if aninvoked Simple Tag Handler threw SkipPageException
or if an invoked Jsp Fragment threw a SkipPageException.

IOException - Subclasses can throw | OException if there was an error writing
to the output stream

See Also: public void doTag()

public static final JspTag findAncestorWithClass(JspTag from,
java.lang.Class klass)

Find the instance of agiven classtype that is closest to agiven instance. This
method uses the getParent method from the Tag and/or SimpleTag interfaces.
This method is used for coordination among cooperating tags.

For every instance of TagAdapter encountered while traversing the ancestors,
the tag handler returned by TagAdapter.getAdaptee() - instead of the Tag-
Adpater itself - is compared to klass. If the tag handler matches, it - and not
its TagAdapter - isreturned.

The current version of the specification only provides one formal way of indi-
cating the observable type of atag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. Thisis
extended in an informal manner by allowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, asin the case of the JSP standard tag library.

When atag library author provides information on the observable type of a
tag handler, client programmatic code should adhere to that constraint. Spe-
cifically, the Class passed to findAncestorWithClass should be a subtype of

the observable type.

Parameters:
from - The instance from where to start looking.

klass - The subclass of JspTag or interface to be matched

Returns: the nearest ancestor that implementsthe interface or is an instance
of the class specified

JavaServer Pages 2.0 Specification

2-85

2-86 TAG EXTENSION API

protected JspFragment getJspBody()
Returns the body passed in by the container via setJspBody.

Returns. the fragment encapsulating the body of thistag, or null if the
action element is empty in the page.

protected JspContext getJspContext()
Returns the page context passed in by the container via setJspContext.
Returns: the page context for this invocation
public JspTag getParent()
Returns the parent of thistag, for collaboration purposes.
Returns. the parent of thistag
public void setJspBody(JspFragment jspBody)
Stores the provided JspFragment.

Parameters:
jspBody - The fragment encapsulating the body of thistag. If the action
element is empty in the page, this method is not called at all.

See Also: public void setJspBody(JspFragment jspBody)
public void setJspContext(JspContext pc)

Stores the provided JSP context in the private jspContext field. Subclasses
can access the JspContext via getJspContext().

Parameters:
pc - the page context for this invocation

See Also: public void setJspContext(JspContext pc)
public void setParent(JspTag parent)
Sets the parent of thistag, for collaboration purposes.

The container invokes this method only if thistag invocation is nested within
another tag invocation.

Parameters:
parent - the tag that encloses this tag

JSP.13.6.3 TagAdapter

Syntax
public class TagAdapter implements Tag

JavaServer Pages 2.0 Specification

Simple Tag Handlers

All Implemented Interfaces. JspTag, Tag

Description

Wraps any SimpleTag and exposes it using a Tag interface. Thisisused to allow
collaboration between classic Tag handlers and SimpleTag handlers.

Because SimpleTag does not extend Tag, and because Tag.setParent() only
accepts a Tag instance, a classic tag handler (one that implements Tag) cannot
have a SimpleTag as its parent. To remedy this, a TagAdapter is created to wrap
the SimpleTag parent, and the adapter is passed to setParent() instead. A classic
Tag Handler can call getAdaptee() to retrieve the encapsulated SimpleTag
instance.

Since; 2.0

JSP.13.6.3.1 Constructors
public TagAdapter(SimpleTag adaptee)

Creates anew TagAdapter that wraps the given SimpleTag and returns the
parent tag when getParent() is called.

Parameters:
adaptee - The SimpleTag being adapted as a Tag.

JSP.13.6.3.2 Methods
public int doEndTag()
Must not be called.
Returns: aways throws UnsupportedOperationException

Throws:
UnsupportedOperationException - Must not be called

JspException - never thrown
public int doStartTag()
Must not be called.
Returns: aways throws UnsupportedOperationException

Throws:
UnsupportedOperationException - Must not be called

JspException - never thrown
public JspTag getAdaptee()

JavaServer Pages 2.0 Specification

2-87

2-88

TAG EXTENSION API

Getsthe tag that is being adapted to the Tag interface. This should be an
instance of SimpleTag in JSP 2.0, but room isleft for other kinds of tagsin
future spec versions.

Returns: thetag that is being adapted

public Tag getParent()

Returns the parent of thistag, which is always getAdaptee().getParent(). This
will either be the enclosing Tag (if getAdaptee().getParent() implements
Tag), or an adapter to the enclosing Tag (if getAdaptee().getParent() does not
implement Tag).

Returns: The parent of the tag being adapted.

public void release()

Must not be called.

Throws:
UnsupportedOperationException - Must not be called

public void setPageContext(PageContext pc)

Must not be called.

Parameters:
pc - ignored.

Throws:
UnsupportedOperationException - Must not be called

public void setParent(Tag parentTag)

Must not be called. The parent of this tag is aways getAdaptee().getParent().

Parameters:
parentTag - ignored.

Throws:
UnsupportedOperationException - Must not be called.

JSP.13.7 JSP Fragments

JSP Fragments are represented in Java by an instance of the
javax.servlet.jsp.tagext.JspFragment abstract class. Pieces of JSP code are trand ated
into JSP fragments in the context of atag invocation. JSP Fragments are created
when providing the body of a <jsp:attribute> standard action for an attribute that is
defined as afragment or of type JspFragment, or when providing the body of atag
invocation handled by a Simple Tag Handler.

JavaServer Pages 2.0 Specification

JSP Fragments 2-89

Before being passed to atag handler, the JspFragment instance is associated
with the JspContext of the surrounding page in an implementati on-dependent
manner. In addition, it is associated with the parent Tag or SimpleTag instance for
collaboration purposes, so that when a custom action isinvoked from within the
fragment, setParent() can be called with the appropriate value. The fragment
implementation must keep these associations for the duration of the tag invocation
in which it is used.

The invoke() method executes the body and directs all output to either the
passed in java.io.Writer or the JspWriter returned by the getOut() method of the Jsp-
Context associated with the fragment.

The implementation of each method can optionally throw a JspException,
which must be handled by the invoker. Note that tag library developers and page
authors should not generate JspFragment implementations manually.

The following sections specify the creation and invocation lifecycles of a JSP
Fragment in detail, from the JSP Container’s perspective.

Creation of a JSP Fragment
When a JSP fragment is created, the following steps occur (in order):

1. Aninstance of aclass implementing the JspFragment abstract class is obtained
(may either be created or can optionally be cached) each time the tag isinvoked.
This instance must be configured to produce the contents of the body of the frag-
ment when invoked. If the fragment is defining the body of a <jsp:attribute>, the
fragment must evaluate the body each time it isinvoked. Otherwiseg, if the frag-
ment is defining the body of a simple tag, the behavior of the fragment when
invoked varies depending on the body-content declared for the tag:

«If the body-content is “tagdependent”, then the fragment must echo the con-
tents of the body verbatim when invoked.
«If the body-content is “scriptless”, then the fragment must evaluate the body
each timeit isinvoked.
2. The JspFragment instance is passed a reference to the current JspContext. When-
ever the fragment invokes atag handler, it must use this value when calling set-
JspContext().

3. The JspFragment instance is associated with an instance of the tag handler of the
nearest enclosing tag invocation, or with null if thereis no enclosing tag. When-
ever the fragment invokes a tag handler, the fragment must use this value when
calling setParenty().

JavaServer Pages 2.0 Specification

2-90

TAG EXTENSION API

Invocation of a JSP Fragment

After aJSP fragment is created, it is passed to atag handler for later invocation.
JSP fragments can be invoked either programmatically from atag handler writtenin
Java, or from atag file using the <jsp:invoke> or <jsp:doBody> standard action.

JSP fragments are passed to tag handlers using a bean property of type Jsp-
Fragment. These fragments can be invoked by calling the invoke() method in the
JspFragment abstract class. Note that it islegal (and possible) for afragment to
recursively invoke itself, indirectly.

The following steps are followed when invoking a JSP fragment:

1. Thetag handler invoking the fragment is responsible for setting the values of all
declared AT_BEGIN and NESTED variables in the JspContext of the calling page/
tag, before invoking the fragment. Note that thisis not always the same as the
JspContext of the fragment being invoked, as fragments can be passed from one
tag to another. In the case of tag files, for each variable declared in scope
AT_BEGIN or NESTED, if a page scoped attribute exists with the provided name
in the tag file, the JSP container must generate code to create/update the page
scoped attribute of the provided name in the calling page/tag. If a page scoped
attribute with the provided name does not exist in the calling page, and a page
scoped attribute of the provided name is present in the tag file, the scoped
attribute is removed from the tag file's page scope. See the chapter on Tag Files
for details.

2. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var
attribute is specified, a custom java.io.Writer is created that can expose the result
of the invocation as ajava.lang.String object. If the varReader attribute is speci-
fied, a custom java.io.Writer object is created that can expose the resulting invoca-
tion as ajava.io.Reader object.

3. Theinvoke() method of the fragment is invoked, passing in an optional Writer.

4. Before executing the body of the fragment, if anon-null valueis provided for the
writer parameter, then the value of JspContext.getOut() and the implicit “out”
object must be updated to send output to that writer. To accomplish this, the con-
tainer must call pushBody(writer) on the current JspContext, where writer is the
instance of java.io.Writer passed to the fragment upon invocation.

5. The body of the fragment is then evaluated by executing the generated code. The
body of the fragment may execute other standard or custom actions. If aclassic
Custom Tag Handler isinvoked and returns SKIP_PAGE, or if a Simple Tag Han-
dler isinvoked and throws SkipPageException, the JspFragment must throw Skip-
PageException to signal that the calling page is to be skipped.

6. Once the fragment has completed its evaluation, even if an exception is thrown,
the value of JspContext.getOut() must be restored via acall to popBody() on the
current JspContext.

JavaServer Pages 2.0 Specification

JSP Fragments 291

7. The fragment returns from invoke()

8. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var or
varReader attribute is specified, a scoped variable with a name equal to the value
of the var or varReader attribute is created (or modified) in the page scope, and
the valueis set to ajava.lang.String or java.io.Reader respectively that can produce
the results of the fragment invocation.

9. Theinvoke() method can be called again, zero or more times. When the tag invo-
cation defining the fragment is complete, the tag must discard the fragment
instance since it might be reused by the container.

JSP.13.7.1 JspFragment

Syntax
public abstract class JspFragment

Description

Encapsulates a portion of JSP code in an object that can be invoked as many times
as needed. JSP Fragments are defined using JSP syntax as the body of atag for an
invocation to a SimpleTag handler, or as the body of a <jsp:attribute> standard
action specifying the value of an attribute that is declared as a fragment, or to be
of type JspFragment in the TLD.

The definition of the JSP fragment must only contain template text and JSP action
elements. In other words, it must not contain scriptlets or scriptlet expressions.
At trandation time, the container generates an implementation of the Jsp-
Fragment abstract class capable of executing the defined fragment.

A tag handler can invoke the fragment zero or more times, or pass it along to
other tags, before returning. To communicate values to/from a JSP fragment, tag
handlers store/retrieve values in the JspContext associated with the fragment.

Note that tag library developers and page authors should not generate Jsp-
Fragment implementations manually.

Implementation Note: It is not necessary to generate a separate class for each
fragment. One possible implementation is to generate a single helper class for
each page that implements JspFragment. Upon construction, a discriminator can
be passed to select which fragment that instance will execute.

Since: 2.0

JavaServer Pages 2.0 Specification

2-92 TAG EXTENSION API

JSP.13.7.1.1 Constructors
public JspFragment()

JSP.13.7.1.2 Methods
public abstract JspContext getJspContext()
Returns the JspContext that is bound to this JspFragment.
Returns: The JspContext used by this fragment at invocation time.
public abstract void invoke(java.io.Writer out)

Executes the fragment and directs all output to the given Writer, or the Jsp-
Writer returned by the getOut() method of the JspContext associated with the
fragment if out is null.

Parameters:
out - The Writer to output the fragment to, or null if output should be sent to
JspContext.getOut().

Throws:
JspException - Thrown if an error occured while invoking this fragment.

SkipPageException - Thrown if the page that (either directly or indirectly)
invoked the tag handler that invoked this fragment is to cease evaluation. The
container must throw this exception if a Classic Tag Handler returned
Tag.SKIP_PAGE or if a Simple Tag Handler threw SkipPageException.

java.io.lOException - If there was an error writing to the stream.

JSP.13.8 Example Simple Tag Handler Scenario

The following non-normative example isintended to help solidify some of the
concepts relating to Tag Files, JSP Fragments and Simple Tag Handlers. In the first
section, two sample input files are presented, a JSP (my.jsp), and asimple tag han-
dlier implemented using atag file (s mpletag.tag). One possible output of the tranda-
tion process is presented in the second section.

Although short, the example shows all concepts, including the variable
directive. In practice most uses of tags will be much simpler, but probably longer.

The sample generated code is annotated with comments that point to lifecycle
steps presented in various sections. The notation is as follows:

*“Step T.X" = Annotated step x from “Lifecycle of Simple Tag Handlers™ ear-
lier in this Chapter.

*“Step C.x” = Annotated step x from “Creation of a JSP Fragment” earlier in
this Chapter.

JavaServer Pages 2.0 Specification

Example Simple Tag Handler Scenario 2-93

*“Step FxX” = Annotated step x from “Invocation of a JSP Fragment” earlier
in this Chapter.

Sample Source Files
This section presents the sample source files in this scenario, from which the
output files are generated.

Original JSP (my.jsp)
<%@ taglib prefix="my” tagdir="/WEB-INF/tags” %>
<my:simpleTag x="10">
<jsp:attribute name="y">20</jsp:attribute>
<jsp:attribute name="nonfragment”>
Nonfragment Template Text
</jsp:attribute>
<jsp:attribute name="frag">
Fragment Template Text ${varl}
</jsp:attribute>
<jsp:body>
Body of tag that defines an AT_BEGIN
scripting variable ${var1}.
</jsp:body>
</my:simpleTag>

Original Tag File (/WEB-INF/tags/simpletag.tag)
<%-- /IWEB-INF/tags/simpletag.tag --%>
<%@ attribute name="x" %>
<%@ attribute name="y” %>
<%@ attribute name="nonfragment” %>
<%@ attribute name="frag” fragment="true” %>
<%@ variable name-given="varl” scope="AT_BEGIN” %>
<%@ taglib prefix="c” uri="http://java.sun.com/jspljstl/core” %>
Some template text.
<c:set var="varl” value="${x+y}"/>
<jsp:invoke fragment="frag” varReader="varl"/>
Invoke the body:
<jsp:doBody/>

Sample Generated Files

This section presents sample output files that might be generated by a JSP com-
piler, from the source files presented in the previous section.

JavaServer Pages 2.0 Specification

2-94

TAG EXTENSION API

Helper classfor JspFragment (JspFragmentBase.java)

public abstract class JspFragmentBase
implements javax.servlet.jsp.tagext.JspFragment
{
protected javax.servlet.jsp.JspContext jspContext;
protected javax.servlet.jsp.tagext.JspTag parentTag;
public void JspFragmentBase(
javax.servlet.jsp.JspContext jspContext,
javax.servlet.jsp.tagext.JspTag parentTag)

this.jspContext = jspContext;
this.parentTag = parentTag;
}
}

Relevant Portion of JSP Service Method

/I Step T.1 - Initial creation
MySimpleTag _jsp_mySimpleTag = new MySimpleTag();
/I Step T.2 - Set page context and parent (since parent is null,
/I no need to call setParent() in this case)
_jsp_mySimpleTag.setJspContext(jspContext);
/I Step T.3 - XML element attributes evaluated and set
_jsp.mySimpleTag.setX(“10");
/I Step T.4 - <jsp:attribute> elements evaluated and set
/I - parametery
/I (using PageContext.pushBody() is one possible implementation -
/l one limitation is that this code will only work for Servlet-based code).
out = ((PageContext)jspContext).pushBody();
out.write(“20");
_jsp_mySimpleTag.setY(
((Gavax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
/I - parameter nonfragment
/I (using PageContext.pushBody() is one possible implementation -
/l one limitation is that this code will only work for Servlet-based code).
/I Note that trim is enabled by default, else we would have “\n Non..”
out = ((PageContext)jspContext).pushBody();
out.write(“Nonfragment Template Text”);
_jsp_mySimpleTag.setNonfragment(
((Gavax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
/I - parameter frag
_jsp_mySimpleTag.setFrag(
/I Step C.1 - New instance of fragment created
/I Step C.2 - Store jspContext
/I Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {
public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;
/I Step F.1-F.3 done in tag file (see following example)
/I Step F4 - If writer provided, push body:
if(out == null’) {

JavaServer Pages 2.0 Specification

Example Simple Tag Handler Scenario

out = this.jspContext.getOut();

else {
out = this.jspContext.pushBody(writer);

I/l Step 5 - Evaluate body of fragment:
try {
out.write(“Fragment Template Text ");
out.write(jspContext.getExpressionEvaluator().evaluate(
“${varl}”,
java.lang.String.class,
vResolver, fMapper, “my”));

}
finally {
Il Step F.6 - Restore value of JspContext.getOut()
if(writer I=null') {
this.jspContext.popBody();

/I Step F.7-F.9 done in tag file (see following example)

}

1)
I/l Step T.5 - Determine and set body of the tag
/I - body of tag
_jsp_mySimpleTag.setJspBody(
// Step C.1 - New instance of fragment created
/I Step C.2 - Store jspContext
/I Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {
public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;
/I Step F.1-F.3 done in tag file (see following example)
/I Step F.4 - If writer provided, push body:
if(writer == null) {
out = this.jspContext.getOut();

else {
out = this.jspContext.pushBody(writer);

/I Step E.5 - Evaluate body of fragment:
try {
out.write(
“Body of tag that defines an AT_BEGIN\n” +
“ scripting variable ");
out.write(jspContext.getExpressionEvaluator().evaluate(
“${varl}”,
java.lang.String.class,
vResolver, fMapper, “‘my”));
out.write(“\n");
}
finally {
/I Step F.6 - Restore value of JspContext.getOut()
if(writer I=null) {

JavaServer Pages 2.0 Specification

2-95

2-96

TAG EXTENSION API
this.jspContext.popBody();

/I Step F.7-F.9 done in tag file (see following example)
}

)
I/l Step T.6 - Inovke doTag
/I Step T.7 occurs in the tag file (see following example)
/I Step T.8 - doTag returns - page will catch SkipPageException.
_jsp_mySimpleTag.doTag();
/I Step T.9 - Declare AT_BEGIN and AT_END scripting variables
String varl = (String)jspContext.findAttribute(“varl”);

Generated Simple Tag Handler (MySimpleTag.java)

public class MySimpleTag

extends javax.servlet.jsp.tagext.SimpleTagSupport
{

/I Attributes:

private String X;

private String y;

private String nonfragment;

private javax.servlet.jsp.tagext.JspFragment frag;

/I Setters and getters for attributes:

public void setX(Stirng x) {

this.x = x;

}
public String getX() {
return this.x;

}
public void setY(String y) {
this.y = y;

}
public String getY() {
return this.y;

public void setNonfragment(String nonfragment) {
this.nonfragment = nonfragment;

}
public String getNonfragment() {
return this.nonfragment;

public void setFrag(javax.servlet.jsp.tagext.JspFragment frag) {
this.frag = frag;

public javax.servlet.jsp.tagext.JspFragment getFrag() {
return this.frag;

protected JspContext jspContext;

public void setJspContext(JspContext ctx) {
super.setJspContext(ctx);
/I Step T.2 - A JspContext wrapper is created.
/I (Implementation of wrapper not shown).

JavaServer Pages 2.0 Specification

Example Simple Tag Handler Scenario 2-97

this.jspContext = new utils.JspContextWrapper(ctx);

public JspContext getJspContext() {
/I Step T.2 - Calling getJspContext() must return the
/l wrapped JspContext.
return this.jspContext;

public void doTag() throws JspException {

java.lang.Object jspValue;

JspContext jspContext = getJspContext();

JspContext _jsp_parentContext =
SimpleTagSupport.this.getJspContext();

try {
javax.servlet.jsp.JspWriter out = jspContext.getOut();
/I Create page-scope attributes for each tag attribute:
this.jspContext.setAttribute(“x”, getX());
this.jspContext.setAttribute(“y”, getY());
this.jspContext.setAttribute(“nonfragment”, getNonfragment());
this.jspContext.setAttribute(“frag”, getFrag());
/I Synchronize AT_BEGIN variables from calling page
if((jspValue = _jsp_parentContext.getAttribute(
“varl”)) = null)

jspContext.setAttribute(“varl”, value);

else {
jspContext.removeAttribute(“varl”,
JspContext. PAGE_SCOPE);

/| Tag template text:

out.write(“\n\n\n\n\n\n\n\nSome template text.\n");

/I Invoke c:set - recognized tag handler from JSTL:

jspContext.setAttribute(“varl”,
jspContext.getExpressionEvaluator().evaluate(

“${X+y}”l

java.lang.String.class,

jspContext,

prefixMap, functionMap, “my”));

I/ Invoke the “frag” fragment:

/I Step E1 - Set values of AT_BEGIN and NESTED variables

/I in calling page context.

if((jspValue = jspContext.getAttribute(“varl”)) !'= null) {
_jsp_parentContext.setAttribute(“varl”, value);

else {
_jsp_parentContext.removeAttribute(“varl”,
JspContext. PAGE_SCOPE);

/I Step F.2 - varReader is specified, generate a writer.
java.io.Writer _jsp_sout = new java.io.StringWriter();
/I Step F.3 - Invoke fragment with writer
getFrag().invoke(_jsp_sout);

/I Step F.4 - F.6 occur in the fragment (see above)

JavaServer Pages 2.0 Specification

2-98 TAG EXTENSION API

/I Step F.7 - fragment returns
/I Step F.8 - varReader specified, so save to var
jspContext.setAttribute(
“varl”, new StringReader(_jsp_sout.toString()));
/l Step F.9 - Donel!
out.write(“\n\ninvoke the body:\n");
/I Invoke the body of the tag:
/] Step E1 - Set values of AT_BEGIN and NESTED variables
/I in calling page context.
if((jspValue = jspContext.getAttribute(“varl”)) = null) {
_jsp_parentContext.setAttribute(“varl”, value);

else {
_jsp_parentContext.removeAttribute(“varl”,
JspContext. PAGE_SCOPE);

/I Step F.2 - varReader is not specified - does not apply.
try {
/I Step F.3 - Invoke body, passing optional writer
getJspBody().invoke(null);
}

finally {
/I Steps F.4 - F.6 occur in the fragment (see above)
/I Step R7 - fragment returns

/I Step F.8 does not apply.
/I Step F.9 - Done!

}
finally {
/I Tag handlers generate code to synchronize AT_BEGIN with
/I calling page, regardless of whether an error occurs.
if((jspValue = jspContext.getAttribute(“varl”)) = null) {
_jsp_parentContext.setAttribute(“varl”, value);

else {
_jsp_parentContext.removeAttribute(“varl”,
JspContext. PAGE_SCOPE);

}
}

}
}

JSP.13.9 Trandation-time Classes

The next classes are used at trand ation time.

Tag mapping, Tag hame
A taglib directive introduces atag library and associates aprefix toit. The TLD
associated with the library associates Tag handler classes (plus other information)

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-99

with tag names. Thisinformation is used to associate a Tag class, a prefix, and a
name with each custom action element appearing in a JSP page.

At execution time the implementation of a JSP page will use an available Tag
instance with the appropriate property settings and then follow the protocol
described by the interfaces Tag, IterationTag, BodyTag, SimpleTag, and Try-
CatchFinally. The implementation guarantees that all tag handler instances are
initialized and all are released, but the implementation can assume that previous
settings are preserved by atag handler, to reduce run-time costs.

Scripting Variables

JSP supports scripting variables that can be declared within a scriptlet and can
be used in another. JSP actions also can be used to define scripting variables so they
can used in scripting elements, or in other actions. Thisisvery useful in some cases,
for example, the jsp:useBean standard action may define an object which can later
be used through a scripting variable.

In some cases the information on scripting variables can be described directly
into the TLD using elements. A special caseistypica interpretation of the “id”
attribute. In other cases the logic that decides whether an action instance will
define a scripting variable may be quite complex and the name of a TagExtralnfo
classisinstead given in the TLD. The getVvariablelnfo method of this classis used
at trandation time to obtain information on each variable that will be created at
request time when this action is executed. The method is passed a TagData
instance that contains the translation-time attribute val ues.

Validation

The TLD file contains several pieces of information that is used to do syntactic
validation at trandation-time. It aso contains two extensible validation mecha-
nisms: a TagLibraryValidator class can be used to validate a complete JSP page, and a
TagExtralnfo class can be used to validate a specific action. In some cases, additional
request-time validation will be done dynamically within the methods in the Tag
instance. If an error is discovered, an instance of JspTagException can be thrown. If
uncaught, this object will invoke the errorpage mechanism of JSP.

The TagLibraryValidator is an addition to the JSP 1.2 specification and isvery
open ended, being strictly more powerful than the TagExtralnfo mechanism. A
JSP page is presented via the PageData object, which abstracts the XML view of
the JSP page.

A PageData instance will provides an InputStream (read-only) on the page.
Later specifications may add other views on the page (DOM, SAX, JDOM are all
candidates), for now these views can be generated from the InputStream and

JavaServer Pages 2.0 Specification

2-100

TAG EXTENSION API

perhaps can be cached for improved performance (recall the view of the pageis
just read-only).

Asof JSP 2.0, the JSP container must support ajsp:id attribute to provide
higher quality validation errors. The container will track the JSP pages as passed
to the container, and will assign to each element aunique “id”, which is passed as
the value of the jsp:id attribute. Each XML element in the XML view will be
extended with this attribute. The TagLibraryValidator can use the attribute in one
or more ValidationM essage objects. The container then, in turn, can use these
values to provide more precise information on the location of an error.

The prefix for theid attribute need not be “jsp” but it must map to the
namespace http://java.sun.com/JSP/Page. In the case where the user has redefined
the jsp prefix, an alternative prefix must be used by the container.

Validation Details

In detail, validation is done as follows:

First, the JSP page is parsed using the information in the TLD. At this stage
valid mandatory and optional attributes are checked.

Second, for each unique tag library in the page as determined by the tag
library URI, and in the lexical order in which they appear, their associated
validator class (if any) isinvoked. Thisinvolves severa substeps.

Thefirst substep isto obtain an initialized validator instance by either:

sconstruct a new instance and invoke setlnitParameters() on it, or

obtain an existing instance that is not being used, invoke release() on it, and
then invoke setInitParameters() onit, or

elocate an existing instance that is not being used on which the desired set-
InitParameters() has aready been invoked

The class nameis asindicated in the <validator-class> element, and the Map
passed through setl nitParameters() is as described in the <init-params> element. Al
TagLibraryValidator classes are supposed to keep their initParameters until new
ones are set, or until release() isinvoked on them.

The second substep is to perform the actual validation. Thisis done by
invoking the validate() method with a prefix, uri, and PageData that correspond to
the taglib directive instance being validated and the PageData representing the
page. In the case where asingle URI is mapped to more than one prefix, the prefix
of the first URI must be used.

The last substep is to invoke the release() method on the validator tag when it
isno longer needed. This method releases all resources.

Finally, after checking al the tag library validator classes, the TagExtralnfo
classes for all tags will be consulted by invoking their validate method. The order
of invocation of this methods is undefined.

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-101

JSP.13.9.1 TagLibrarylnfo

Syntax
public abstract class TagLibrarylnfo

Description

Tranglation-time information associated with ataglib directive, and its underlying
TLD file. Most of the information is directly from the TLD, except for the prefix
and the uri values used in the taglib directive

JSP.13.9.1.1 Fields
protected FunctioniInfo[] functions
An array describing the functions that are defined in thistag library.
Since: 2.0
protected java.lang.String info
Information (documentation) for this TLD.
protected java.lang.String jspversion
The version of the JSP specification thistag library iswritten to.
protected java.lang.String prefix
The prefix assigned to thistaglib from the taglib directive.
protected java.lang.String shortname
The preferred short name (prefix) asindicated inthe TLD.
protected TagFilelnfo[] tagFiles
An array describing the tag files that are defined in this tag library.
Since: 2.0
protected TagInfo[] tags
An array describing the tags that are defined in thistag library.
protected java.lang.String tlibversion
The version of the tag library.
protected java.lang.String uri
The value of the uri attribute from the taglib directive for thislibrary.
protected java.lang.String urn

The“reliable” URN indicated in the TLD.

JavaServer Pages 2.0 Specification

2-102 TAG EXTENSION API

JSP.13.9.1.2 Constructors
protected TagLibraryInfo(java.lang.String prefix, java.lang.String uri)

Constructor. Thiswill invoke the constructors for Taglnfo, and TagAttribute-
Info after parsing the TLD file.

Parameters:
prefix - the prefix actually used by the taglib directive

uri - the URI actually used by the taglib directive

JSP.13.9.1.3 Methods
public Functioninfo getFunction(java.lang.String name)

Get the FunctionInfo for a given function name, looking through all the func-
tionsin thistag library.

Parameters:
name - The name (no prefix) of the function

Returns: the Functioninfo for the function with the given name, or null if
no such function exists

Since. 2.0
public Functioninfo[] getFunctions()
An array describing the functions that are defined in thistag library.

Returns: the functions defined in thistag library, or azero length array if
the tag library defines no functions.

Since: 2.0
public java.lang.String getinfoString()

Information (documentation) for this TLD.

Returns: theinfo string for thistag lib
public java.lang.String getPrefixString()

The prefix assigned to thistaglib from the taglib directive

Returns. the prefix assigned to this taglib from the taglib directive
public java.lang.String getReliableURN()

The*“reliable” URN indicated inthe TLD (the uri element). Thismay be used
by authoring tools asaglobal identifier to use when creating ataglib directive
for thislibrary.

Returns. areliable URN toaTLD like this

public java.lang.String getRequiredVersion()

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-103

A string describing the required version of the JSP container.
Returns: the (minimal) required version of the JSP container.
See Also: JspEnginelnfo

public java.lang.String getShortName()

The preferred short name (prefix) asindicated in the TLD. This may be used
by authoring tools as the preferred prefix to use when creating an taglib direc-
tive for thislibrary.

Returns: the preferred short name for the library
public Taginfo getTag(java.lang.String shortname)

Get the Taglnfo for a given tag name, looking through all the tagsin this tag
library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the Taglnfo for the tag with the specified short name, or null if no
such tag isfound

public TagFilelnfo getTagFile(java.lang.String shortname)

Get the TagFilelnfo for a given tag name, looking through all the tag filesin
thistag library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the TagFilelnfo for the specified Tag file, or null if no Tag fileis
found

Since: 2.0
public TagFilelnfo[] getTagFiles()
An array describing the tag files that are defined in this tag library.

Returns: the TagFilelnfo objects corresponding to the tag files defined by
thistag library, or azero length array if thistag library defines no tagsfiles

Since: 2.0
public Taginfo[] getTags()
An array describing the tags that are defined in thistag library.

Returns: the Taglnfo objects corresponding to the tags defined by this tag
library, or azero length array if thistag library defines no tags

public java.lang.String getURI()
The value of the uri attribute from the taglib directive for thislibrary.

JavaServer Pages 2.0 Specification

2-104

TAG EXTENSON API
Returns; thevalue of the uri attribute
JSP.13.9.2 Taglnfo

Syntax

public class Taglnfo

Description

Tag information for atag in a Tag Library; This classis instantiated from the Tag
Library Descriptor file (TLD) and is available only at trandlation time.

JSP.13.9.21 Fields

public static final java.lang.String BODY_CONTENT_EMPTY
Static constant for getBodyContent() when it is empty.

public static final java.lang.String BODY_CONTENT_JSP
Static constant for getBodyContent() when it is JSP.

public static final java.lang.String BODY_CONTENT_SCRIPTLESS
Static constant for getBodyContent() when it is scriptless.
Since: 2.0

public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT
Static constant for getBodyContent() when it is Tag dependent.

JSP.13.9.2.2 Constructors

public Taginfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibrarylnfo taglib, TagExtralnfo tagExtralnfo,
TagAttributelnfo[] attributelnfo)

Constructor for Taglnfo from datain the JSP 1.1 format for TLD. This class
isto beinstantiated only from the TagLibrary code under request from some
JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since
TagLibibraryInfo reflects both TLD information and taglib directive informa-
tion, a Taglnfo instance is dependent on ataglib directive. Thisis probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of thistag

tagClassName - The name of the tag handler class

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-105

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtralnfo - The instance providing extra Tag info. May be null
attributelnfo - An array of Attributelnfo data from descriptor. May be null;

public Taginfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibrarylnfo taglib, TagExtralnfo tagExtralnfo,
TagAttributelnfol] attributelnfo, java.lang.String displayName,
java.lang.String smalllcon, java.lang.String largelcon, TagVariablelnfo[] tvi)

Constructor for Taglnfo from data in the JSP 1.2 format for TLD. This class
isto beinstantiated only from the TagLibrary code under request from some
JSP code that isparsing a TLD (Tag Library Descriptor). Note that, since
TagLibibrarylnfo reflects both TLD information and taglib directive informa-
tion, a Taglnfo instance is dependent on ataglib directive. Thisis probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of thistag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtralnfo - The instance providing extra Tag info. May be null
attributelnfo - An array of Attributelnfo data from descriptor. May be null;
displayName - A short name to be displayed by tools

smalllcon - Path to asmall icon to be displayed by tools

largelcon - Path to alarge icon to be displayed by tools

tvi - An array of a TagVariablelnfo (or null)

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibrarylnfo taglib, TagExtralnfo tagExtralnfo,
TagAttributelnfo[] attributelnfo, java.lang.String displayName,
java.lang.String smallicon, java.lang.String largelcon, TagVariablelnfo[] tvi,
boolean dynamicAttributes)

Constructor for Taglnfo from datain the JSP 2.0 format for TLD. This class
isto beinstantiated only from the TagLibrary code under request from some

JavaServer Pages 2.0 Specification

2-106

TAG EXTENSION API

JSP code that isparsing a TLD (Tag Library Descriptor). Note that, since
TagLibibrarylnfo reflects both TLD information and taglib directive informa-
tion, a Taglnfo instance is dependent on ataglib directive. Thisis probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of thistag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags
infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.
tagExtrainfo - The instance providing extra Tag info. May be null
attributelnfo - An array of Attributelnfo datafrom descriptor. May be null;
displayName - A short name to be displayed by tools

smalllcon - Path to a small icon to be displayed by tools
largelcon - Path to alargeicon to be displayed by tools

tvi - An array of a TagVariablelnfo (or null)

dynamicAttributes - True if supports dynamic attributes

Since: 2.0

JSP.13.9.2.3 Methods
public TagAttributelnfo[] getAttributes()

Attribute information (in the TLD) on thistag. The return is an array describ-
ing the attributes of thistag, asindicated in the TLD.

Returns: Thearray of TagAttributelnfo for thistag, or a zero-length array if
the tag has no attributes.

public java.lang.String getBodyContent()

The bodycontent information for thistag. If the bodycontent is not defined
for thistag, the default of JSP will be returned.

Returns: the body content string.
public java.lang.String getDisplayName()

Get the displayName.

Returns: A short name to be displayed by tools, or null if not defined
public java.lang.String getinfoString()

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-107

The information string for the tag.
Returns: theinfo string, or null if not defined
public java.lang.String getLargelcon()
Get the path to the large icon.
Returns: Path to alargeicon to be displayed by tools, or null if not defined
public java.lang.String getSmalllcon()
Get the path to the small icon.
Returns: Path to asmall icon to be displayed by tools, or null if not defined
public java.lang.String getTagClassName()
Name of the class that provides the handler for thistag.
Returns: The name of the tag handler class.
public TagExtralnfo getTagExtralnfo()
Theinstance (if any) for extra tag information.
Returns. The TagExtralnfo instance, if any.
public TagLibrarylnfo getTagLibrary()
The instance of TabLibrarylnfo we belong to.
Returns: thetag library instance we belong to
public java.lang.String getTagName()
The name of the Tag.
Returns: The (short) name of the tag.
public TagVariablelnfo[] getTagVariablelnfos()
Get TagVariablelnfo objects associated with this Taginfo.

Returns: Array of TagVariablelnfo objects corresponding to variables
declared by thistag, or azero length array if no variables have been declared

public VariableInfo[] getVariablelnfo(TagData data)

Information on the scripting objects created by thistag at runtime. Thisisa
convenience method on the associated TagExtral nfo class.

Parameters:
data - TagData describing this action.

Returns: if a TagExtralnfo object is associated with this Taglnfo, the result
of getTagExtralnfo().getVariablelnfo(data), otherwise null.

public boolean hasDynamicAttributes()

JavaServer Pages 2.0 Specification

2-108 TAG EXTENSION API

Get dynamicAttributes associated with this Taglnfo.
Returns: Trueif tag handler supports dynamic attributes
Since: 2.0

public boolean isValid(TagData data)

Tranglation-time validation of the attributes. Thisis aconvenience method on
the associated TagExtralnfo class.

Parameters:
data - The tranglation-time TagData instance.

Returns. Whether the datais valid.
public void setTagExtralnfo(TagExtralnfo tei)
Set the instance for extra tag information.

Parameters:
tei - the TagExtral nfo instance

public void setTagLibrary(TagLibraryinfo tl)

Set the TagLibrarylnfo property. Note that a TagLibrarylnfo element is
dependent not just on the TLD information but also on the specific taglib
instance used. This meansthat afair amount of work needs to be done to con-
struct and initialize TagLib objects. If used carefully, this setter can be used to
avoid having to create new Taglnfo elements for each taglib directive.

Parameters:
tl - the TagLibrarylnfo to assign

public ValidationMessage[] validate(TagData data)

Trand ation-time validation of the attributes. Thisis aconvenience method on
the associated TagExtralnfo class.

Parameters:
data - The trandation-time TagData instance.

Returns: A null object, or zero length array if no errors, an array of
ValidationM essages otherwise.

Since 2.0

JSP.13.9.3 TagFilelnfo

Syntax

public class TagFilelnfo

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-109

Description

Tag information for atag filein a Tag Library; This classis instantiated from the
Tag Library Descriptor file (TLD) and is available only at trandlation time.

Since: 2.0

JSP.13.9.3.1 Constructors
public TagFilelnfo(java.lang.String name, java.lang.String path, Taglnfo taginfo)

Constructor for TagFilelnfo from datain the JSP 2.0 format for TLD. This
classisto beinstantiated only from the TagLibrary code under request from
some JSP code that isparsing a TLD (Tag Library Descriptor). Note that,
since TagLibibrarylnfo reflects both TLD information and taglib directive
information, a TagFilelnfo instance is dependent on ataglib directive. Thisis
probably a design error, which may be fixed in the future.

Parameters:
name - The unique action name of this tag

path - Where to find the .tag file implementing this action, relative to the
location of the TLD file.

taginfo - The detailed information about thistag, as parsed from the directives
in thetag file.

JSP.13.9.3.2 Methods
public java.lang.String getName()
The unique action name of this tag.
Returns. The (short) name of the tag.
public java.lang.String getPath()
Where to find the .tag file implementing this action.

Returns: The path of thetag file, relative to the TLD, or “.” if the tag file
was defined in an implicit tag file.

public Taglinfo getTagInfo()
Returns information about this tag, parsed from the directivesin the tag file.
Returns: aTaglnfo object containing information about this tag

JavaServer Pages 2.0 Specification

2-110 TAG EXTENSION API

JSP.13.9.4 TagAttributel nfo

Syntax
public class TagAttributelnfo

Description

Information on the attributes of a Tag, available at trandation time. This classis
instantiated from the Tag Library Descriptor file (TLD).

Only the information needed to generate code is included here. Other information
like SCHEMA for validation belongs elsewhere.

JSP.13.9.4.1 Fidds
public static final java.lang.String ID

“id" iswiredinto be ID. Thereis no real benefit in having it be something
else IDREFs are not handled any differently.

JSP.13.9.4.2 Constructors

public TagAttributelnfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime)

Constructor for TagAttributel nfo. This classisto be instantiated only from
the TagLibrary code under request from some JSP codethat isparsingaTLD
(Tag Library Descriptor).

Parameters;
name - The name of the attribute.

required - If this attribute is required in tag instances.
type - The name of the type of the attribute.
reqTime - Whether this attribute holds a request-time Attribute.

public TagAttributelnfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime, boolean fragment)

JSP 2.0 Constructor for TagAttributelnfo. This classisto beinstantiated only
from the TagLibrary code under request from some JSP code that is parsing a
TLD (Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.
type - The name of the type of the attribute.

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-111

reqTime - Whether this attribute holds a request-time Attribute.
fragment - Whether this attribute is of type JspFragment
Since: 2.0

JSP.13.9.4.3 Methods
public boolean canBeRequestTime()
Whether this attribute can hold a request-time value.
Returns: if the attribute can hold a request-time value.
public static TagAttributelnfo getldAttribute(TagAttributelnfo[] a)

Convenience static method that goes through an array of TagAttributel nfo
objects and looks for “id".

Parameters:
a - An array of TagAttributelnfo

Returns: The TagAttributel nfo reference with name “id”
public java.lang.String getName()
The name of this attribute.
Returns: the name of the attribute
public java.lang.String getTypeName()
Thetype (as a String) of this attribute.
Returns: thetype of the attribute
public boolean isFragment()
Whether this attribute is of type JspFragment.
Returns: if the attribute is of type JspFragment
Since: 2.0
public boolean isRequired()
Whether this attribute is required.
Returns: if the attribute is required.
public java.lang.String toString()

Returns a String representation of this TagAttributel nfo, suitable for debug-
ging purposes.

Overrides. javalang.Object.toString() in class java.lang.Object
Returns: a String representation of this TagAttributelnfo

JavaServer Pages 2.0 Specification

2-112 TAG EXTENSION API

JSP.13.9.5 PageData

Syntax

public abstract class PageData

Description

Translation-time information on a JSP page. The information corresponds to the
XML view of the JSP page.

Objects of this type are generated by the JSP trandlator, e.g. when being pased to
a TaglLibraryValidator instance.

JSP.13.951 Constructors
public PageData()
Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.95.2 Methods
public abstract java.io.InputStream getinputStream()

Returns an input stream on the XML view of a JSP page. The stream is
encoded in UTF-8. Recall tht the XML view of a JSP page has the include
directives expanded.

Returns: Aninput stream on the document.
JSP.13.9.6 TagLibraryValidator

Syntax

public abstract class TagLibraryValidator

Description

Trangdlation-time validator class for a JSP page. A validator operates on the XML
view associated with the JSP page.

The TLD file associates a TagLibraryValidator class and some init arguments
with atag library.

The JSP container is reponsible for locating an appropriate instance of the appro-
priate subclass by

*new afresh instance, or reuse an available one

sinvoke the setlnitParams(Map) method on the instance

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-113

once initialized, the validate(String, String, PageData) method will be invoked,
where the first two arguments are the prefix and uri for thistag library in the XML
View. The prefix is intended to make it easier to produce an error message. How-
ever, it is not aways accurate. In the case where asingle URI is mapped to more
than one prefix in the XML view, the prefix of the first URI is provided. There-
fore, to provide high quality error messages in cases where the tag elements them-
selves are checked, the prefix parameter should be ignored and the actual prefix of
the element should be used instead. TagLibraryValidators should always use the
uri to identify elements as beloning to the tag library, not the prefix.

A TagLibraryValidator instance may create auxiliary objectsinternally to perform
the validation (e.g. an XSchema validator) and may reuse it for al the pagesin a
given tranglation run.

The JSP container is not guaranteed to serialize invocations of validate() method,
and TagLibraryValidators should perform any synchronization they may require.

As of JSP 2.0, a JSP container must provide a jsp:id attribute to provide higher
quality validation errors. The container will track the JSP pages as passed to the
container, and will assign to each element a unique “id”, which is passed as the
value of the jsp:id attribute. Each XML element in the XML view available will
be extended with this attribute. The TagLibraryValidator can then use the attribute
in one or more ValidationM essage objects. The container then, in turn, can use
these values to provide more precise information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map
to the namespace http://java.sun.com/JSP/Page. A TagLibraryValidator imple-
mentation must rely on the uri, not the prefix, of theid attribute.

JSP.13.9.6.1 Constructors
public TagLibraryValidator()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.9.6.2 Methods
public java.util.Map getinitParameters()

Get the init parameters data as an immutable Map. Parameter names are keys,
and parameter values are the values.

Returns: Theinit parameters as an immutable map.
public void release()
Release any data kept by thisinstance for validation purposes.

public void setInitParameters(java.util. Map map)

JavaServer Pages 2.0 Specification

2-114

TAG EXTENSION API

Set the init datain the TLD for this validator. Parameter names are keys, and
parameter values are the values.

Parameters:
map - A Map describing the init parameters

public ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageData page)
Validate a JSP page. Thiswill get invoked once per unique tag library URI in
the XML view. This method will return null if the pageisvalid; otherwise the

method should return an array of ValidationM essage objects. An array of
length zero is aso interpreted as no errors.

Parameters:

prefix - the first prefix with which the tag library is associated, in the XML
view. Note that some tags may use a different prefix if the namespaceis
redefined.

uri - the tag library’s unique identifier

page - the JspData page object

Returns: A null object, or zero length array if no errors, an array of
ValidationM essages otherwise.

JSP.13.9.7 ValidationM essage

Syntax

public class ValidationMessage

Description
A validation message from either TagLibraryValidator or TagExtralnfo.

As of JSP 2.0, a JSP container must support a jsp:id attribute to provide higher
quality validation errors. The container will track the JSP pages as passed to the
container, and will assign to each element a unique “id”, which is passed as the
value of the jsp:id attribute. Each XML element in the XML view available will
be extended with this attribute. The TagLibraryValidator can then use the attribute
in one or more ValidationMessage objects. The container then, in turn, can use
these values to provide more precise information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map
to the namespace http://java.sun.com/JSP/Page. A TagLibraryValidator imple-
mentation must rely on the uri, not the prefix, of theid attribute.

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-115

JSP.13.9.7.1 Constructors
public ValidationMessage(java.lang.String id, java.lang.String message)

Create a ValidationM essage. The message String should be non-null. The

value of id may be null, if the message is not specific to any XML element, or
if nojsp:id attributes were passed on. If non-null, the value of id must be the
value of ajsp:id attribute for the PageData passed into the validate() method.

Parameters:
id - Either null, or the value of ajsp:id attribute.

message - A localized validation message.

JSP.13.9.7.2 Methods
public java.lang.String getld()
Get the jsp:id. Null means that there is no information available.
Returns: Thejsp:id information.
public java.lang.String getMessage()
Get the localized validation message.
Returns: A validation message

JSP.13.9.8 TagExtralnfo

Syntax
public abstract class TagExtralnfo

Description

Optional class provided by the tag library author to describe additional tranda-
tion-time information not described in the TLD. The TagExtralnfo class is men-
tioned in the Tag Library Descriptor file (TLD).

This class can be used:
«to indicate that the tag defines scripting variables
«to perform trandation-time validation of the tag attributes.

It is the responsibility of the JSP trandator that the initial value to be returned by
callsto getTaginfo() corresponds to a Taglnfo object for the tag being translated.
If an explicit call to setTaglnfo() is done, then the object passed will be returned
in subsequent calls to getTaglnfo().

JavaServer Pages 2.0 Specification

2-116

TAG EXTENSION API

The only way to affect the value returned by getTaginfo() is through a setTag-
Info() call, and thus, TagExtralnfo.setTaglnfo() isto be called by the JSP transla-
tor, with a Taglnfo object that corresponds to the tag being transated. The call
should happen before any invocation on validate() and before any invocation on
getVariablelnfo().

NOTE: It is a (trandlation time) error for a tag definition in a TLD with one or
more variable subelements to have an associated TagExtralnfo implementation
that returns a Variablelnfo array with one or more elements from a call to
getVariablelnfo().

JSP.13.9.8.1 Constructors
public TagExtralnfo()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.9.82 Methods
public final Taginfo getTagInfo()
Get the Taglnfo for this class.
Returns: the taginfo instance this instance is extending
public Variablelnfo[] getVariablelnfo(TagData data)

information on scripting variables defined by the tag associated with this Tag-
Extralnfo instance. Request-time attributes are indicated as such in the Tag-
Data parameter.

Parameters:
data - The TagData instance.

Returns: An array of Variablelnfo data, or null or azero length array if no
scripting variables are to be defined.

public boolean isValid(TagData data)

Trangdlation-time validation of the attributes. Request-time attributes are indi-
cated as such in the TagData parameter. Note that the preferred way to do val-
idation is with the validate() method, since it can return more detailed
information.

Parameters:
data - The TagData instance.

Returns: Whether thistag instanceis valid.
See Also: public ValidationMessage[] validate(TagData data)
public final void setTagInfo(Taglnfo taginfo)

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-117

Set the Taglnfo for this class.

Parameters:
taginfo - The Taglnfo thisinstance is extending

public ValidationMessage[] validate(TagData data)

Trandation-time validation of the attributes. Request-time attributes are indi-
cated as such in the TagData parameter. Because of the higher quality valida-
tion messages possible, thisis the preferred way to do validation (although
isvaid() still works).

JSP 2.0 and higher containers call validate() instead of isvValid(). The default
implementation of this method isto call isvalid(). If isvaid() returnsfalse, a
generic ValidationMessage]] is returned indicating isvValid() returned false.

Parameters:
data - The TagData instance.

Returns: A null object, or zero length array if no errors, an array of
ValidationM essages otherwise.

Since: 2.0

JSP.13.9.9 TagData

Syntax

public class TagData implements java.lang.Cloneable

All Implemented Interfaces. javalang.Cloneable

Description

The (translation-time only) attribute/value information for a tag instance.
TagData is only used as an argument to the isValid, validate, and getVariablelnfo
methods of TagExtralnfo, which are invoked at trandlation time.

JSP.13.9.9.1 Fields
public static final java.lang.Object REQUEST_TIME_VALUE

Distinguished value for an attribute to indicate its value is a request-time
expression (which is not yet available because TagData instances are used at
tranglation-time).

JavaServer Pages 2.0 Specification

2-118 TAG EXTENSION API

JSP.13.9.9.2 Constructors
public TagData(java.util. Hashtable attrs)

Constructor for a TagData. If you already have the attributes in a hashtable,
use this constructor.

Parameters:
attrs - A hashtable to get the values from.

public TagData(java.lang.Object[][] atts)
Constructor for TagData.
A typica constructor may be
static final oject[][] att = {{“connection”, “conn0”"},

{“id”, “query0”}};
static final TagData td = new TagData(att);

All values must be Strings except for those holding the distinguished object
REQUEST_TIME_VALUE.

Parameters:
atts - the static attribute and values. May be null.

JSP.13.9.9.3 Methods
public java.lang.Object getAttribute(java.lang.String attName)

The value of the attribute. If a static value is specified for an attribute that
accepts a request-time attribute expression then that static value is returned,
even if thevalueis provided in the body of aaction. The distinguished object
REQUEST_TIME_VALUE isonly returned if the value is specified asa
reguest-time attribute expression or viathe <jsp:attribute> action with a body
that contains dynamic content (scriptlets, scripting expressions, EL expres-
sions, standard actions, or custom actions). Returns null if the attribute is not
Set.

Parameters:
attName - the name of the attribute

Returns: the attribute’s value
public java.util. Enumeration getAttributes()
Enumerates the attributes.
Returns: An enumeration of the attributes in a TagData
public java.lang.String getAttributeString(java.lang.String attName)
Get the value for a given attribute.
Parameters:

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-119

attName - the name of the attribute
Returns: the attribute value string

Throws:
ClassCastException - if attribute value is not a String

public java.lang.String getld()
The value of thetag'sid attribute.
Returns: thevalue of thetag'sid attribute, or null if no such attribute was
specified.
public void setAttribute(java.lang.String attName, java.lang.Object value)
Set the value of an attribute.

Parameters:
attName - the name of the attribute

value - the value.
JSP.13.9.10 Variablelnfo

Syntax

public class Variablelnfo

Description

Information on the scripting variables that are created/modified by atag (at run-
time). This information is provided by TagExtralnfo classes and it is used by the
translation phase of JSP.

Scripting variables generated by a custom action have an associated scope of
either AT_BEGIN, NESTED, or AT_END.

The class name (Variablelnfo.getClassName) in the returned objects is used to
determine the types of the scripting variables. Note that because scripting vari-
ables are assigned their values from scoped attributes which cannot be of primi-
tive types, “boxed” types such as java.lang.Integer must be used instead of
primitives.

The class name may be a Fully Qualified Class Name, or a short class name.

If aFully Qualified Class Name is provided, it should refer to a class that should
be in the CLASSPATH for the Web Application (see Servlet 2.4 specification -
essentialy it is WEB-INF/lib and WEB-INF/classes). Failure to be so will lead to
atrandation-time error.

JavaServer Pages 2.0 Specification

2-120

TAG EXTENSION API

If ashort class nameis given in the Variablel nfo objects, then the class name must
be that of a public class in the context of the import directives of the page where
the custom action appears. The class must also be in the CLASSPATH for the
Web Application (see Servlet 2.4 specification - essentialy it is WEB-INF/lib and
WEB-INF/classes). Failure to be so will lead to atrandation-time error.

Usage Comments

Frequently afully qualified class name will refer to a classthat is known to the tag
library and thus, delivered in the same JAR file as the tag handlers. In most other
remaining cases it will refer to a class that is in the platform on which the JSP
processor is built (like J2EE). Using fully qualified class names in this manner
makes the usage rel atively resistant to configuration errors.

A short name is usually generated by the tag library based on some attributes
passed through from the custom action user (the author), and it is thus less robust:
for instance a missing import directive in the referring JSP page will lead to an
invalid short name class and atrandation error.

Synchronization Protocol

Theresult of the invocation on getVariablelnfo isan array of Variablelnfo objects.
Each such object describes a scripting variable by providing its name, its type,
whether the variable is new or not, and what its scope is. Scope is best described
through a picture:

HESTED
; LT BEGIN
=fon .= d
biody
s LT END
=ifon= » -

The JSP 2.0 specification defines the interpretation of 3 values:
*NESTED, if the scripting variable is available between the start tag and the
end tag of the action that definesit.
*AT_BEGIN, if the scripting variable is available from the start tag of the
action that definesit until the end of the scope.
*AT_END, if the scripting variable is available after the end tag of the action
that definesit until the end of the scope.

JavaServer Pages 2.0 Specification

Tranglation-time Classes

The scope value for avariable implies what methods may affect its value and thus
where synchronization is needed as illustrated by the table below. Note: the syn-
chronization of the variable(s) will occur after the respective method has been

caled.

Variable Synchronization Points

doStart- dol nit- doAfter- doEndTag() | doTag()
Tag() Body() Body()
Tag AT_BEGIN, AT_BEGIN,
NESTED AT_END
Iterat AT_BEGIN, AT_BEGIN, | AT_BEGIN,
ion- NESTED NESTED AT_END
Tag
Body- AT BEGIN, | AT BEGIN, | AT _BEGIN, | AT_BEGIN,
Tag NESTED!? NESTED!? NESTED AT_END
Simpl AT_BEGIN,
eTag AT_END

! Called after doStartTag() if EVAL_BODY_INCLUDE is returned, or after dolnit-

Body() otherwise.

Variable Information inthe TLD

Scripting variable information can also be encoded directly for most cases into
the Tag Library Descriptor using the <variable> subelement of the <tag> element.

See the JSP specification.

JSP.13.9.10.1 Fields

public static final int AT_BEGIN

Scope information that scripting variable is visible after start tag.
public static final int AT_END

Scope information that scripting variable is visible after end tag.
public static final int NESTED

Scope information that scripting variable is visible only within the start/end

tags.

JavaServer Pages 2.0 Specification

2-121

2-122 TAG EXTENSION API

JSP.13.9.10.2 Constructors

public Variablelnfo(java.lang.String varName, java.lang.String className,
boolean declare, int scope)

Constructor These objects can be created (at translation time) by the Tag-
Extralnfo instances.

Parameters:
varName - The name of the scripting variable

className - The type of this variable

declare - If true, it isanew variable (in some languages thiswill require a
declaration)

scope - Indication on the lexical scope of the variable

JSP.13.9.10.3 Methods
public java.lang.String getClassName()
Returns the type of this variable.
Returns. thetype of thisvariable
public boolean getDeclare()

Returns whether thisis a new variable. If so, in some languages this will
require a declaration.

Returns; whether thisisanew variable.
public int getScope()
Returns the lexical scope of the variable.

Returns. thelexical scope of the variable, either AT_BEGIN, AT_END, or
NESTED.

See Also: public static final int AT_BEGIN, public static final int AT_END,
public static final int NESTED

public java.lang.String getVarName()
Returns the name of the scripting variable.

Returns: the name of the scripting variable

JSP.139.11 TagVariablelnfo

Syntax
public class TagVariablelnfo

JavaServer Pages 2.0 Specification

Tranglation-time Classes

Description

Variable information for atag in a Tag Library; This classisinstantiated from the
Tag Library Descriptor file (TLD) and is available only at trandation time. This
object should be immutable. Thisinformation is only available in JSP 1.2 format
TLDsor above.

JSP.13.9.11.1 Constructors

public TagVariablelnfo(java.lang.String nameGiven,
java.lang.String nameFromAttribute, java.lang.String className,
boolean declare, int scope)

Constructor for TagVariablelnfo.

Parameters:
nameGiven - value of <name-given>

nameFromAttribute - value of <name-from-attribute>
className - value of <variable-class>
declare - value of <declare>

scope - value of <scope>

JSP.13.9.11.2 Methods
public java.lang.String getClassName()
The body of the <variable-class> element.

Returns: The name of the class of the variable or 'java.lang.String’ if not
defined inthe TLD.

public boolean getDeclare()
The body of the <declare> element.

Returns. Whether the variable isto be declared or not. If not defined in the
TLD, 'true’ will be returned.

public java.lang.String getNameFromAttribute()

The body of the <name-from-attribute> element. Thisis the name of an
attribute whose (trandlation-time) value will give the name of the variable.
One of <name-given> or <name-from-attribute> is required.

Returns: The attribute whose value defines the variable name
public java.lang.String getNameGiven()
The body of the <name-given> element.

Returns: The variable name as a constant

JavaServer Pages 2.0 Specification

2-123

2-124 TAG EXTENSION API

public int getScope()
The body of the <scope> element.

Returns. The scopeto give the variable. NESTED scope will be returned if
not defined inthe TLD.

JSP.13.9.12 Functionlnfo

Syntax

public class Functioninfo

Description

Information for afunction in aTag Library. Thisclassisinstantiated from the Tag
Library Descriptor file (TLD) and is available only at trandlation time.

Since: 2.0

JSP.13.9.12.1 Constructors

public FunctionInfo(java.lang.String name, java.lang.String klass,
java.lang.String signature)

Constructor for Functionlnfo.

Parameters:
name - The name of the function

klass - The class of the function

signature - The signature of the function

JSP.13.9.12.2 Methods

public java.lang.String getFunctionClass()
The class of the function.
Returns: Theclass of the function

public java.lang.String getFunctionSignature()
The signature of the function.
Returns: The signature of the function

public java.lang.String getName()
The name of the function.

JavaServer Pages 2.0 Specification

Tranglation-time Classes 2-125

Returns: The name of the function

JavaServer Pages 2.0 Specification

2-126 TAG EXTENSION API

JavaServer Pages 2.0 Specification

cuneren JOP. 14

Expression Language API

T his chapter describes the javax.servlet.jsp.el package. The chapter includes
content that is generated automatically from javadoc embedded into the actual Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

The javax.servlet.jsp.el package contains a number of classes and interfaces
that describe and define programmatic access to the Expression Language
evaluator. This API can also be used by an implementation of JSP to evaluate the
expressions, but other implementations, like open-coding into Java bytecodes, are
alowed. This package isintended to have no dependencies on other portions of
the JSP 2.0 specification.

JSP.14.1 Expression Evaluator

Programmatic access to the EL Expression Evauator is provided through the
following types:
*ExpressionEvaluator
*Expression
*FunctionMapper
*VariableResolver
An ExpressionEvaluator object can be obtained from a JspContext object
through the getExpressionEvaluator method. An ExpressionEvaluator encapsul ates
the EL processor. An EL expression provided as a String can then be evaluated
directly, or it can be parsed first into an Expression object. The parse step, can be
used to factor out the cost of parsing the expression, or even the cost of optimizing
the implementation.
The parsing of an expression string is done against atarget type, a default
prefix (that applies when afunction has no prefix), and a FunctionMapper. The

2-127

2-128

EXPRESSION LANGUAGE API

FunctionMapper object maps a prefix and alocal name part into a
java.lang.reflect.Method object.

The interpretation or evaluation of a parsed expression isdone using a

VariableResolver object. This object resolves top level object names into Objects.
A VariableResolver can be obtained from a JspContext object through the get-
VariableResolver method.

JSP.14.1.1 ExpressionEvaluator

Syntax
public abstract class ExpressionEvaluator

Description

The abstract base class for an expression-language evaluator. Classes that imple-
ment an expression language expose their functionality viathis abstract class.

An instance of the ExpressionEvaluator can be obtained via the JspContext /
PageContext

The parseExpression() and evaluate() methods must be thread-safe. That is, mul-
tiple threads may call these methods on the same ExpressionEvaluator object
simultaneously. Implementations should synchronize access if they depend on
transient state. Implementations should not, however, assume that only one
object of each ExpressionEvaluator type will be instantiated; global caching
should therefore be static.

Only asingle EL expression, starting with'${" and ending with'}’, can be parsed
or evaluated at atime. EL expressions cannot be mixed with static text. For exam-
ple, attempting to parse or evauate “abc${l+1}def${1+1}ghi” or even
“${1+1}${1+1}" will cause an ELException to be thrown.

The following are examples of syntactically legal EL expressions:
*${person.lastName}
*${8 * 8}
*${my:reverse(hello’)}

Since: 2.0

JSP.14.1.1.1 Constructors

public ExpressionEvaluator()

JavaServer Pages 2.0 Specification

Expression Evaluator 2-129

JSP.14.1.1.2 Methods

public abstract java.lang.Object evaluate(java.lang.String expression,
java.lang.Class expectedType, VariableResolver vResolver,
FunctionMapper fMapper)

Evaluates an expression. This method may perform some syntactic validation
and, if so, it should raise an EL ParseException error if it encounters syntactic
errors. EL evaluation errors should cause an EL Exception to be raised.

Parameters:
expression - The expression to be evaluated.

expectedType - The expected type of the result of the evaluation

vResolver - A VariableResolver instance that can be used at runtime to
resolve the name of implicit objectsinto Objects.

fMapper - A FunctionMapper to resolve functions found in the expression. It
can be null, in which case no functions are supported for this invocation.

Returns: Theresult of the expression evaluation.

Throws:
EL Exception - Thrown if the expression evaluation failed.

public abstract Expression parseExpression(java.lang.String expression,
java.lang.Class expectedType, FunctionMapper fMapper)

Prepare an expression for later evaluation. This method should perform syn-
tactic validation of the expression; if in doing so it detects errors, it should
raise an EL ParseException.

Parameters:
expression - The expression to be evaluated.

expectedType - The expected type of the result of the evaluation

fMapper - A FunctionMapper to resolve functions found in the expression. It
can be null, in which case no functions are supported for thisinvocation. The
ExpressionEvaluator must not hold on to the FunctionMapper reference after
returning from parseExpression(). The Expression object returned must
invoke the same functions regardless of whether the mappingsin the
provided FunctionMapper instance change between calling
ExpressionEvaluator.parseExpression() and Expression.evaluate().

Returns. The Expression object encapsulating the arguments.

Throws:
EL Exception - Thrown if parsing errors were found.

JavaServer Pages 2.0 Specification

2-130 EXPRESS ON LANGUAGE API

JSP.14.1.2 Expression

Syntax
public abstract class Expression

Description
The abstract class for a prepared expression.

An instance of an Expression can be obtained via from an ExpressionEvaluator
instance.

An Expression may or not have done a syntactic parse of the expression. A client
invoking the evaluate() method should be ready for the case where EL Parse-
Exception exceptions are raised.

Since: 2.0

JSP.14.1.2.1 Constructors

public Expression()

JSP.14.1.2.2 Methods
public abstract java.lang.Object evaluate(VariableResolver vResolver)

Evaluates an expression that was previously prepared. In some implementa-
tions preparing an expression involves full syntactic validation, but others
may not do so. Evaluating the expression may raise an EL ParseException as
well as other EL Exceptions due to run-time evaluation.

Parameters:
vResolver - A VariableResolver instance that can be used at runtime to
resolve the name of implicit objectsinto Objects.

Returns: Theresult of the expression evaluation.

Throws:
EL Exception - Thrown if the expression evaluation failed.

JSP.14.1.3 VariableResolver

Syntax
public interface VariableResolver

JavaServer Pages 2.0 Specification

Expression Evaluator 2-131

Description

This classis used to customize the way an ExpressionEvaluator resolves variable
references at evaluation time. For example, instances of this class can implement
their own variable lookup mechanisms, or introduce the notion of “implicit vari-
ables” which override any other variables. An instance of this class should be
passed when evaluating an expression.

An instance of this class includes the context against which resolution will hap-
pen

Since: 2.0

JSP.14.1.3.1 Methods
public java.lang.Object resolveVariable(java.lang.String pName)
Resolves the specified variable. Returns null if the variable is not found.

Parameters:
pName - the name of the variable to resolve

Returns; theresult of the variable resolution

Throws:
EL Exception - if afailure occurred while trying to resolve the given variable

JSP.14.1.4 FunctionM apper

Syntax
public interface FunctionMapper

Description
The interface to a map between EL function names and methods.

Classes implementing this interface may, for instance, consult tag library infor-
mation to resolve the map.

Since: 2.0

JSP.14.1.41 Methods

public java.lang.reflect.Method resolveFunction(java.lang.String prefix,
java.lang.String localName)

JavaServer Pages 2.0 Specification

2-132

EXPRESSION LANGUAGE API

Resolves the specified local name and prefix into a Java.lang.Method.
Returns null if the prefix and local name are not found.

Parameters:
prefix - the prefix of the function, or “” if no prefix.

localName - the short name of the function

Returns. the result of the method mapping. Null means no entry found.

JSP.14.2 Exceptions

The ELException exception is used by the expression language to denote any
exception that may arise during the parsing or evaluation of an expression. The
ELParseException exception isasubclass of ELException that correspondsto parsing
errors

Parsing errors are conveyed as exceptions to simplify the API. It is expected
that many JSP containers will use additional mechanismsto parse EL expressions
and report their errors - arun-time APl cannot provide accurate line-error
numbers without additional machinery.

JSP.14.2.1 EL Exception

Syntax
public class ELException extends java.lang.Exception

Direct Known Subclasses. EL ParseException
All Implemented Interfaces. javaio.Serializable

Description

Represents any of the exception conditions that arise during the operation evalua
tion of the evaluator.

Since: 2.0

JSP.14.21.1 Constructors
public ELException()
Creates an EL Exception with no detail message.

JavaServer Pages 2.0 Specification

Exceptions 2-133

public ELException(java.lang.String pMessage)

Creates an EL Exception with the provided detail message.

Parameters:
pMessage - the detail message

public ELException(java.lang.String pMessage,
java.lang.Throwable pRootCause)

Creates an EL Exception with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
public ELException(java.lang.Throwable pRootCause)
Creates an EL Exception with the given root cause.

Parameters:
pRootCause - the originating cause of this exception

JSP.14.2.1.2 Methods
public java.lang.Throwable getRootCause()
Returns the root cause.

Returns: theroot cause of this exception

JSP.14.2.2 EL Par seException

Syntax
public class ELParseException extends ELException

All Implemented Interfaces. javaio.Serializable

Description

Represents a parsing error encountered while parsing an EL expression.
Since: 2.0

JSP.14.2.2.1 Constructors
public ELParseException()
Creates an EL ParseException with no detail message.

JavaServer Pages 2.0 Specification

2-134 EXPRESS ON LANGUAGE API

public ELParseException(java.lang.String pMessage)
Creates an EL ParseException with the provided detail message.

Parameters:
pMessage - the detail message

JSP.14.3 Code Fragment

Below is anon-normative code fragment outlining how the APIs can be used.

/I Get an instance of an ExpressionEvaluator
ExpressionEvaluator ee = myJspContext.getExpressionEvaluator();
VariableResolver vr = myJspContext.getVariableResolver();
FunctionMapper fm; // we don't have a portable implementation yet
/I Example of compiling an expression. See [ISSUE-2]
/I Errors detected this way may have higher quality than those
// found with a simple validate() invocation.
ExpressionCompilation ce;
try {
ce = ee.prepareExpression(expr,

targetClass,

fm,

null // no prefixes

} ca{tch (ELParseException e) {
log (e.getMessage());

try {
ce.evaluate(vr);

} catch (EIException e) {
log (e);
}

JavaServer Pages 2.0 Specification

Part 111

T he next Appendices provide details.

Appendices B, C and D are normative. Appendices A, E, and F are non-
normative.

The Appendices are

» Appendix A - Packaging JSP pages

» Appendix B - Schemafor the portion of web.xml owned by the JSP specifica-
tion

» Appendix C - Schemafor the Tag Library Descriptor file.

» Appendix D - Page Character Encoding Detection Algorithm
e Appendix E - Changes

* Appendix F - Glossary of terms

JavaServer Pages 2.0 Specification

31

JavaServer Pages 2.0 Specification

cerenor JOPA

Packaging JSP Pages

T his appendix shows two simple examples of packaging a JSP pageinto a
WAR for delivery into a Web container. In the first example, the JSP pageis deliv-
ered in source form. Thisislikely to be the most common example. In the second
example the JSP page is compiled into a servlet that uses only Servlet 2.4 and JSP
2.0 APl calls; the servlet isthen packaged into a WAR with a deployment descriptor
such that it looks as the original JSP page to any client.

This appendix is non normative. Actualy, strictly speaking, the appendix
relates more to the Servlet 2.4 capabilities than to the JSP 2.0 capabilities. The
appendix isincluded here as thisis afeature that JSP page authors and JSP page
authoring tools are interested in.

JSP.A.1A Very Simple JSP Page

We gtart with avery simple JSP page Helloworld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>

Hello World

</p>

JSP.A.2The JSP Page Packaged as Sourcein aWAR File
The JSP page can be packaged into aWAR file by just placing it at location /

Helloworld.jsp the default JSP page extension mapping will pick it up. The web.xml
istrivia:

JavaServer Pages 2.0 Specification

3-3

PACKAGING JSP PAGES

<IDOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<webapp>
<session-config>
<session-timeout> 1 </session-timeout>
</session-config>
</webapp>

JSP.A.3The Servlet for the Compiled JSP Page

Asan dternative, we will show how one can compilethe JSP page into aservlet
classto runin a JSP container.

The JSP page is compiled into a servlet with some implementation dependent
name com.acme._jsp_HellowWorld_XXX_Impl. The servlet code only depends on the
JSP 2.0 and Servlet 2.4 APIs, asfollows:

package com.acme;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public class _jsp_HelloWorld_XXX_Impl
extends PlatformDependent_Jsp_Super_Impl

{
public void _jsplnit() {
...
}

public void jspDestroy() {
...

}

static JspFactory_factory= JspFactory.getDefaultFactory();
public void _jspService(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException

JavaServer Pages 2.0 Specification

Object page= this;

HttpSessionsession= request.getSession();
ServletConfigconfig= getServletConfig();
ServletContextapplication = config.getServletContext();

PageContextpageContext
= _factory.getPageContext(this,

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true

);

JspWriterout= pageContext.getOut();
I/l page context creates initial JspWriter "out"

try {
out.printin("<p>");
out.printin("Hello World");
out.printin("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}

JSP.A.4The Web Application Descriptor

The servlet ismade to look as a JSP page with the following web.xml:

JavaServer Pages 2.0 Specification

3-6 PACKAGING JSP PAGES

<IDOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<webapp>
<servlet>
<servlet-name> HelloWorld </servlet-name>
<servlet-class>com.acme._jsp_HelloWorld_XXX_Impl</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>
</servlet-mapping>
<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

JSP.A.5The WAR for the Compiled JSP Page
Finally everything is packaged together into a WAR:
/WEB-INF/web.xml
/WEB-INF/classes/com/acme/_jsp_HelloWorld_XXX_Impl.class

Notethat if the servlet class generated for the JSP page had depended on some
support classes, they would have to be included in the WAR.

JavaServer Pages 2.0 Specification

cerenor JOP. B

JSP Elements of web.xml

T his appendix describes the JSP elements of the Servlet 2.4 Web Application
Deployment Descriptor, which is described using XML Schema. The Servlet 2.4

deployment descriptor schema includes the definitions that appear in this Appendix.

Thisisthe same XML Schema as http://java.sun.com/xml/ns/j2eef/jsp_2_0.xsd,
except for some formatting changes to extract comments and make them more
readable.

JSP.B.1XML Schemafor JSP 2.0 Deployment Descriptor

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsd: schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
t ar get Nanespace="http://java. sun. coni xm / ns/j 2ee"
xm ns:j2ee="http://java.sun.conl xm /ns/j2ee"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"
el enent For mDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent ati on>

This is the XM Schema for the JSP 2.0 depl oynment descri ptor
types. The JSP 2.0 schema contains all the special
structures and datatypes that are necessary to use JSP files
froma web application

The contents of this schema is used by the web-app_2_4. xsd
file to define JSP specific content.

JavaServer Pages 2.0 Specification

37

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

The followi ng conventions apply to all J2EE
depl oynent descriptor el enents unless indicated otherw se.

- In elements that specify a pathname to a file within the
sane JAR file, relative filenanes (i.e., those not
starting with "/") are considered relative to the root of
the JAR file's namespace. Absolute filenanmes (i.e., those
starting with "/") also specify nanes in the root of the
JAR file' s nanespace. |In general, relative nanes are
preferred. The exception is .war files where absol ute
names are preferred for consistency with the Servlet API

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:include schenmaLocati on="j2ee_1 4. xsd"/>
<! PR R EE R R RS E RS EREESEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESEEEESS ->
<xsd: conpl exType nane="j sp-confi gType">

<xsd: annot at i on>
<xsd: docunent ati on>

The jsp-configType is used to provide global configuration
information for the JSP files in a web application. It has
two subel enents, taglib and jsp-property-group

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>

<xsd: el enent nanme="taglib"
type="j 2ee: tagli bType"
m nCccur s="0"
maxCccur s="unbounded"/ >

<xsd: el enent nane="j sp- property-group"
type="j 2ee:j sp- property-groupType"
m nCccur s="0"
maxQOccur s="unbounded"/ >

JavaServer Pages 2.0 Specification

39

</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<|__ LR S R R R R R R R R R R R R R >

<xsd: conpl exType nanme="jsp-fil eType">

<xsd: annot ati on>
<xsd: docunent at i on>

The jsp-file elenent contains the full path to a JSP file
within the web application beginning with a */'.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee: pat hType"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ LR S R R R R R R R R R R R R R R R >

<xsd: conpl exType nane="j sp- property-groupType">

<xsd: annot ati on>
<xsd: docunent at i on>

The j sp-property-groupType is used to group a nunber of
files so they can be given global property information
Al files so described are deenmed to be JSP files. The
follow ng additional properties can be descri bed:

- Control whether EL is ignored

Control whether scripting elenments are invalid

- Indicate pageEncoding information

- Indicate that a resource is a JSP docunment (XM.)
Prel ude and Coda automatic includes.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionG oup"/>
<xsd: el ement nane="url - pattern”
type="j 2ee: url -patternType"

JavaServer Pages 2.0 Specification

3-10

maxQccur s="unbounded"/ >

<xsd: el enent name="el -i gnor ed"
type="j 2ee: true-fal seType"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

Can be used to easily set the isELIgnored

property of a group of JSP pages. By default, the
EL evaluation is enabled for Wb Applications using
a Servlet 2.4 or greater web.xm, and disabl ed

ot her wi se.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent name="page- encodi ng"
type="j 2ee: string"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The valid val ues of page-encoding are those of the
pageEncodi ng page directive. It is a
translation-time error to name different encodings
in the pageEncoding attribute of the page directive
of a JSP page and in a JSP configuration el enent

mat ching the page. It is also a translation-tine
error to nane different encodings in the prolog

or text declaration of a docunent in XM. syntax and
in a JSP configuration el enent nmatching the docunent.
It is legal to name the sanme encodi ng through
mul i t pl e nechani sns.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el ement nane="scripting-invalid"
type="j 2ee: true-fal seType"
m nCccur s="0">

JavaServer Pages 2.0 Specification

311

<xsd: annot ati on>
<xsd: docunent ati on>

Can be used to easily disable scripting in a
group of JSP pages. By default, scriptingis
enabl ed

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent nanme="is-xm"
type="j 2ee: true-fal seType"
m nCccurs="0">

<xsd: annot ati on>
<xsd: docunent ati on>

If true, denotes that the group of resources
that match the URL pattern are JSP docunents,
and thus nmust be interpreted as XM. docunents.
If false, the resources are assuned to not

be JSP docunents, unless there is another
property group that indicates otherw se

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el ement nane="i ncl ude- prel ude"
type="j 2ee: pat hType"
m nCccur s="0"
maxQccur s="unbounded" >

<xsd: annot ati on>
<xsd: docunent ati on>

The include-prelude element is a context-relative
path that nust correspond to an elenent in the
Web Application. Wen the elenment is present,
the given path will be automatically included (as
in an include directive) at the beginning of each
JSP page in this jsp-property-group

JavaServer Pages 2.0 Specification

312

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent name="i ncl ude- coda"
type="j 2ee: pat hType"
m nCccur s="0"
maxQccur s=" unbounded" >

<xsd: annot at i on>
<xsd: docunent at i on>

The include-coda elenent is a context-relative
path that nust correspond to an elenment in the
Web Application. Wen the element is present,
the given path will be automatically included (as
in an include directive) at the end of each

JSP page in this jsp-property-group

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

</ xsd: sequence>
<xsd:attribute name="id" type="xsd:I1D'/>

</ xsd: conpl exType>

<|__ EE IR O o S O O I O O -—>

<xsd: conpl exType nanme="tagli bType">

<xsd: annot ati on>
<xsd: docunent ati on>

The taglibType defines the syntax for declaring in
t he depl oynent descriptor that a tag library is
available to the application. This can be done

to override inplicit map entries fromTLD files and
fromthe container.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="taglib-uri"
type="j 2ee: string">

JavaServer Pages 2.0 Specification

3-13

<xsd: annot ati on>
<xsd: docunent ati on>

A taglib-uri element describes a URl identifying a
tag library used in the web application. The body
of the taglib-uri element may be either an
absolute URI specification, or a relative URl.
There should be no entries in web.xm wth the
sane taglib-uri val ue.

</ xsd: docunent at i on>
</ xsd: annot ati on>

</ xsd: el ement >
<xsd: el ement nane="taglib-|ocation"
type="j 2ee: pat hType" >

<xsd: annot ati on>
<xsd: docunent ati on>

the taglib-location elenent contains the |ocation
(as a resource relative to the root of the web
application) where to find the Tag Library
Description file for the tag library.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: conpl exType>

</ xsd: schema>

JavaServer Pages 2.0 Specification

3-14

JavaServer Pages 2.0 Specification

coreno JOP.C

Tag Library Descriptor'
Formats

T his appendix includes the XML Schemaand DTD filesfor tag library
descriptors using each version of the JSP specification (from JSP 1.1 to current). All
JSP 2.0 containers are required to be able to parse and accept al TLD formats
described in this appendix. The formats are listed in order from most recent to least
recent.

JSP.C.1XML Schemafor TLD, JSP 2.0

Thefollowing isan XML Schemafile describing a Tag Library Descriptor ina
JSP 2.0 format. Thisisthe same XSD ashttp://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd, except for some formatting changes to extract comments and
make them more readable. Some of the types used in this XSD are defined in the
J2EE Platform Specification (see Related Documentsin the Preface for alink to this
specification).

The schemalis preceeded by a set of diagrams that graphically illustrate the
element structure of the schema. The symbols‘+', **’, ‘|, *(" and ‘)’ have the
same meaning asin DTD. In the event of a discrepancy between these diagrams
and the schema, the schema prevails.

JavaServer Pages 2.0 Specification

3-15

3-16

| taglib |

—| description*

—| small-icon? |

—| display-name*

—| large-icon? |

icon*

—| description*

tlib-version

—| validator-class |

short-name

—| init-param*

description* |

uri?

validator?

I

listener* See Below...
tag* See Below...
tag-file* See Below...

function* See Below...

param-name
param-value

—| taglib-extension* H extension-element+

Figure JSP.C-1 TLD Schema Element Structure

| listener* |

—| description* |

—| display-name* |

small-icon?

—| icon*

-| listener-class |

large-icon?

JavaServer Pages 2.0 Specification

Figure JSP.C-2 TLD Schema Element Structure - listener

3-17

tag*

—| small-icon? |
—| large-icon? |

—| description* |

name-given |
name-from-attribute

—| description*

—| display-name*

|
|
H icon* =
|
|
|
|

H name

-| tag-class

—| tei-class? —|variab|e-c|ass? |

—| body-content —| declare? |
—| variable* |——| scope? |

—| description* |

-| attribute* I _| e |
—| required? |

—| dynamic-attributes? | (rtexprvalue? type?)
| | fragment?

—| example? |
—| tag-extension* |—|extension-element+ |

Figure JSP.C-3 TLD Schema Element Structure - tag

JavaServer Pages 2.0 Specification

3-18

|tag-fi|e* |

—| description* |

—| display-name* |

—| icon*

—l name

small-icon?

large-icon?

|
—| path |

—| example? |

—|tag-extension* |—|extension-element+ |

Figure JSP.C-4 TLD Schema Element Structure - tag-file

| function* |

—| description* |

display-name* |

small-icon?
large-icon?

icon*

_|
_|
= name
_|

function-class

|
|
—| function-signature |
|

—| example?

—| function-extension* |—|extension-e|ement+ |

Figure JSP.C-5 TLD Schema Element Structure - function

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schena
t ar get Nanespace="http://java. sun. coni xm / ns/j 2ee"
xm ns:j2ee="http://java. sun. coni xm /ns/j 2ee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

JavaServer Pages 2.0 Specification

el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="2.0">

<xsd: annot ati on>
<xsd: docunent ati on>

This is the XM. Schema for the JSP Taglibrary
descriptor. Al Taglibrary descriptors nust

indicate the tag library schema by using the Taglibrary
namespace

http://java. sun. com xm / ns/j 2ee

and by indicating the version of the schema by
using the version el ement as shown bel ow

<taglib xm ns="http://java. sun.conm xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schera- i nst ance"
xsi :schemaLocati on="..."
version="2.0">

</taglib>

The instance docunents may indicate the published
version of the schema using xsi:schemaLocation attribute
for J2EE nanmespace with the following | ocation:

http://java.sun. conf xm / ns/j2ee/ web-jsptaglibrary_2 0.xsd

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd:include schenmaLocati on="j2ee_1 4. xsd"/>

<|__ R R S S S S O S R R S O S R R R ->

<xsd: el enent nanme="taglib" type="j2ee:tldTaglibType">

<xsd: annot at i on>
<xsd: docunent ati on>

The taglib tag is the docunment root.

The definition of taglib is provided
by the tldTaglibType

JavaServer Pages 2.0 Specification

3-19

3-20

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: uni que nanme="t ag- name- uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The taglib el enent contains, anmpbng other things, tag and
tag-file el ements.
The nane subel enents of these el enents nust each be uni que.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpath="j2ee:tag|j2ee:tag-file"/>
<xsd:field xpat h="j 2ee: name"/ >

</ xsd: uni que>

<xsd: uni que nanme="functi on-name-uni queness" >

<xsd: annot ati on>
<xsd: docunent ati on>

The taglib el enent contains function el ements.
The nane subel enents of these el enents nust each be uni que.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sel ector xpat h="j 2ee: function"/>
<xsd: field xpat h="j 2ee: nanme"/ >
</ xsd: uni que>
</ xsd: el enent >

<|__ EE R R R R R I S I -->

<xsd: conpl exType nane="body- cont ent Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

Specifies the type of body that is valid for a tag
This value is used by the JSP container to validate
that a tag invocation has the correct body syntax and
by page conposition tools to assist the page author
in providing a valid tag body.

JavaServer Pages 2.0 Specification

321

There are currently four val ues specified:

t agdependent The body of the tag is interpreted by the tag
implementation itself, and is nost |ikely
in adifferent "language", e.g enbedded SQ
stat enents.

JSP The body of the tag contains nested JSP
synt ax.

enpty The body nust be enpty

scriptless The body accepts only tenplate text, EL

Expressions, and JSP action elenents. No
scripting elements are all owed.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuner ati on val ue="t agdependent "/ >
<xsd: enuner ation val ue="JSP"/ >
<xsd: enuneration val ue="enpty"/>
<xsd: enunerati on val ue="scriptless"/>
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R R R R L -—>

<xsd: conpl exType nane="extensi bl eType" abstract="true">

<xsd: annot at i on>
<xsd: docunent ati on>

The extensi bl eType is an abstract base type that is used to
define the type of extension-elenents. |nstance docunents
nmust substitute a known type to define the extension by
using xsi:type attribute to define the actual type of

ext ensi on-el enents.

</ xsd: docunent at i on>
</ xsd: annot at i on>

JavaServer Pages 2.0 Specification

3-22

<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ R R R R RS E SR ESE RS EREEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEEREEES ->

<xsd: conpl exType nanme="functi onType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The function elenent is used to provide information on each
function in the tag library that is to be exposed to the EL

The function el ement nay have several subel ements defining

description Optional tag-specific information

di spl ay- nane A short nane that is intended to be
di spl ayed by tools

icon Optional icon elenent that can be used
by tools

name A uni que name for this function

function-cl ass Provi des the nane of the Java class that

i mpl ements the function

function-signature Provides the signature, as in the Java
Language Specification, of the Java
met hod that is to be used to inplenent
the function.

exanpl e Optional informal description of an
exanpl e of a use of this function

function-extension Zero or nore extensions that provide extra
i nformation about this function, for too
consunption

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionGoup"/>
<xsd: el ement nanme="nane"

JavaServer Pages 2.0 Specification

3-23

type="j 2ee: t| d- canoni cal - nameType" >

<xsd: annot ati on>
<xsd: docunent ati on>

A uni que nanme for this function.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el emrent nane="functi on-cl ass"
type="j 2ee: fully-qualified-classType">

<xsd: annot at i on>
<xsd: docunent ati on>

Provides the fully-qualified class nane of the Java
class containing the static nmethod that inplenments
the function.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el enent nanme="functi on-si gnature"
type="j 2ee: string">

<xsd: annot at i on>
<xsd: docunent at i on>

Provi des the signature, of the static Java nethod that is
to be used to inplenment the function. The syntax of the
function-signature element is as follows:

FunctionSignature ::= ReturnType S Met hodNanme S?
(' S? Paraneters? S? ')’

Ret ur nType = Type
Met hodNane = ldentifier
Par aneters = Par anet er
| (Paranmeter S? ',’ S? Paraneters)

JavaServer Pages 2.0 Specification

3-24

Par anet er c1= Type
Wher e:

* Type is a basic type or a fully qualified
Java cl ass nane (including package nane),
as per the ’'Type' production in the Java
Language Specification, Second Edition,
Chapter 18.

* ldentifier is a Java identifier, as per
the 'Identifier’ production in the Java
Language Specification, Second
Edi ti on, Chapter 18.

Exanpl e:
java.lang. String ni ckName(java.lang.String, int)

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nanme="exanpl e"
type="j 2ee: xsdStri ngType"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The exanpl e el enent contains an informal description
of an exanple of the use of this function.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el ement nane="functi on- ext ensi on"
type="j 2ee: tl d-ext ensi onType"
m nCccur s="0"
maxQCccur s="unbounded" >

<xsd: annot ati on>
<xsd: docunent ati on>

JavaServer Pages 2.0 Specification

Function extensions are for tool use only and nust not affect
the behavi or of a container.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:I1D'/>
</ xsd: conpl exType>

<|__ R R O o S R O S S I O S O O I -—>

<xsd: conpl exType nane="t agFi |l eType">

<xsd: annot at i on>
<xsd: docunent ati on>

Defines an action in this tag library that is inplenmented
as a .tag file.

The tag-file element has two required subel ements:

description Optional tag-specific information

di spl ay- nane A short nane that is intended to be
di spl ayed by tools

i con Optional icon elenent that can be used
by tools
name The uni que action nanme
pat h Wiere to find the .tag file inplenmenting this

action, relative to the root of the web
application or the root of the JARfile for a
tag library packaged in a JAR This nust
begin with /WEB-INF/tags if the .tag file
resides in the WAR, or /META-INF/tags if the
.tag file resides in a JAR

exanpl e Optional informal description of an
exampl e of a use of this tag

t ag- ext ensi on Zero or nore extensions that provide extra
information about this tag, for tool

JavaServer Pages 2.0 Specification

325

3-26

consunption

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionGoup"/>
<xsd: el enent nanme="nane"
type="j 2ee: tl d-canoni cal - naneType"/ >
<xsd: el enent nanme="path"
type="j 2ee: pat hType"/ >
<xsd: el enent nanme="exanpl e"
type="j 2ee: xsdStri ngType"
m nCccurs="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The exanpl e el enent contains an informal description

of an exanple of the use of a tag.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el ement nane="t ag- ext ensi on"
type="j 2ee: tl d- ext ensi onType"
m nCccur s="0"
maxQccur s="unbounded" >

<xsd: annot ati on>
<xsd: docunent ati on>

Tag extensions are for tool use only and nust not
the behavi or of a container

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

JavaServer Pages 2.0 Specification

af f ect

3-27

<|__ EE R I I S S I I S I S O - >

<xsd: conpl exType nanme="t agType">

<xsd: annot ati on>
<xsd: docunent ati on>

The tag defines a unique tag in this tag library. It has one
attribute, id.

The tag el enent may have several subel ements defining
descri ption Optional tag-specific information

di spl ay- nane A short nanme that is intended to be
di spl ayed by tools

i con Optional icon elenent that can be used
by tools

name The uni que action nane

tag-cl ass The tag handl er class inplenenting

j avax. servl et.jsp.tagext.JspTag

tei-class An optional subcl ass of
javax. servl et.jsp.tagext. TagExtral nfo

body- cont ent The body content type
vari abl e Optional scripting variable information
attribute Al attributes of this action that are

eval uated prior to invocation.

dynam c-attri butes Whether this tag supports additiona
attributes with dynamic names. |If
true, the tag-class nust inplenment the
javax. servl et.jsp.tagext.Dynam cAttri butes
interface. Defaults to false

exanpl e Optional informal description of an
exanpl e of a use of this tag

t ag- ext ensi on Zero or nore extensions that provide extra

JavaServer Pages 2.0 Specification

3-28

i nformation about this tag, for too
consunpti on

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionGoup"/>
<xsd: el enent nanme="nane"
type="j 2ee: tl d-canoni cal - naneType"/ >

<xsd: el enent nanme="t ag- cl ass"
type="j2ee: fully-qualified-classType">

<xsd: annot ati on>
<xsd: docunent ati on>

Defines the subclass of javax.serlvet.jsp.tagext.JspTag
that inplenents the request tinme semantics for
this tag. (required)

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el ement nane="tei -cl ass"
type="j 2ee:fully-qualified-classType"
m nCccurs="0">

<xsd: annot at i on>
<xsd: docunent ati on>

Defines the subcl ass of javax.servlet.]jsp.tagext. TagExtralnfo
for this tag. (optional)

If this is not given, the class is not consulted at
translation tine.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el ement nane="body-content"
type="j 2ee: body- cont ent Type" >

JavaServer Pages 2.0 Specification

3-29

<xsd: annot ati on>
<xsd: docunent ati on>

Specifies the format for the body of this tag

The default in JSP 1.2 was "JSP" but because this

is an invalid setting for sinple tag handlers, there
is no longer a default in JSP 2.0. A reasonable
default for sinple tag handlers is "scriptless" if
the tag can have a body.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el enent name="vari abl e"
type="j 2ee: vari abl eType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent name="attri bute"
type="j2ee:tld-attributeType"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: el enent nanme="dynam c-attri butes"
type="j 2ee: generi c- bool eanType"
m nCccurs="0"/>
<xsd: el enent nane="exanpl e"
type="j 2ee: xsdSt ri ngType"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The exanpl e el enent contains an informal description
of an exanple of the use of a tag

</ xsd: docunent ati on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent nanme="t ag- ext ensi on"
type="j 2ee: t| d- ext ensi onType"
m nCccur s="0"
maxCccur s="unbounded" >

<xsd: annot at i on>
<xsd: docunent ati on>

JavaServer Pages 2.0 Specification

3-30

Tag extensions are for tool use only and nust not affect
the behavi or of a container

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ R I O S o O O S I S I _—

<xsd: conpl exType nanme="tl d-attri buteType">

<xsd: annot ati on>
<xsd: docunent ati on>

The attribute el ement defines an attribute for the nesting
tag. The attributre element may have several subel ements

defi ni ng:
description a description of the attribute
nane the nanme of the attribute
required whet her the attribute is required or
opti ona
rtexprval ue whet her the attribute is a runtine attribute
type the type of the attributes
fragnent whether this attribute is a fragnent

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>

<xsd: el ement nane="descri ption"

type="j 2ee: descri pti onType"

m nCccur s="0" nmaxQOccur s="unbounded"/ >
<xsd: el ement nanme="nane"

type="j 2ee:java-identifierType"/>
<xsd: el ement nanme="required"

type="j 2ee: generi c- bool eanType"

JavaServer Pages 2.0 Specification

331

m nQccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

Defines if the nesting attribute is required or
optional

If not present then the default is "false", i.e
the attribute is optional

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: choi ce>
<xsd: sequence>
<xsd: el enent nanme="rtexprval ue"
t ype="j 2ee: generi c- bool eanType"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

Defines if the nesting attribute can have scriptl et
expressions as a value, i.e the value of the
attribute may be dynam cally cal cul ated at request
time, as opposed to a static value deternined at
translation tinme.

If not present then the default is "false", i.e the
attribute has a static val ue

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nanme="type"
type="j 2ee: fully-qualified-classType"
m nCccur s="0">

<xsd: annot at i on>
<xsd: docunent ati on>

Defines the Java type of the attributes value. For

JavaServer Pages 2.0 Specification

static values (those determ ned at translation tine)
the type is always java.lang. String

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd: el enent nanme="fragnment"
t ype="j 2ee: generi c- bool eanType"
m nCccur s="0">

<xsd: annot at i on>
<xsd: docunent ati on>

"true" if this attribute is of type

javax.j sp.tagext.JspFragnment, representing dynam c
content that can be re-evaluated as many tines

as needed by the tag handler. |If omtted or "false"
the default is still type="java.lang. String"

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID"'/>
</ xsd: conpl exType>

<|__ R I S R S I -->

<xsd: conpl exType name="t| d- canoni cal - naneType" >

<xsd: annot ati on>
<xsd: docunent ati on>

Defines the canonical name of a tag or attribute being
defi ned

The nane nust conformto the lexical rules for an NMIOKEN

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: si npl eCont ent >

JavaServer Pages 2.0 Specification

<xsd:restriction base="j2ee: xsdNMIOKENType" />
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<|__ R R R R L -—>

<xsd: conpl exType nane="t| d- ext ensi onType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The tl d-extensionType is used to indicate
extensions to a specific TLD el enent.

It is used by elenents to designate an extension bl ock
that is targeted to a specific extension designated by
a set of extension elements that are declared by a
nanmespace. The nanespace identifies the extension to
the tool that processes the extension

The type of the extension-elenent is abstract. Therefore
a concrete type nust be specified by the TLD using
xsi:type attribute for each extension-el enent.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el ement nane="ext ensi on-el ement”

type="j 2ee: ext ensi bl eType"
maxCOccur s="unbounded"/ >

</ xsd: sequence>

<xsd: attribute name="nanmespace"
use="requi red"
type="xsd: anyURI "/ >

<xsd:attribute name="id" type="xsd:I1D'/>

</ xsd: conpl exType>

<|__ R IR O O O I O O O R S I O O R O O R —

<xsd: conpl exType nane="t| dTagl i bType" >

<xsd: annot at i on>
<xsd: docunent ati on>

The taglib tag is the document root, it defines:

JavaServer Pages 2.0 Specification

3-33

description a sinple string describing the "use" of this
taglib, should be user discernable

di spl ay- nane the display-nane el enment contains a
short name that is intended to be displayed
by tools
icon optional icon that can be used by tools
tlib-version the version of the tag library inplenmentation
short - name a sinple default short nane that coul d be

used by a JSP authoring tool to create
nanes with a mmenoni c val ue; for exanple,
the it may be used as the prefered prefix
value in taglib directives

uri a uri uniquely identifying this taglib

val i dat or optional TagLibraryValidator information

|'i stener optional event |istener specification

tag tags in this tag library

tag-file tag files in this tag library

function zero or nore EL functions defined in this
tag library

tagli b-extension zero or nore extensions that provide extra
information about this taglib, for too
consunpti on

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: group ref="j2ee: descriptionGoup"/>
<xsd: el enent name="tli b-version"
type="j 2ee: dewey- ver si onType" >

<xsd: annot ati on>
<xsd: docunent ati on>

JavaServer Pages 2.0 Specification

3-35

Describes this version (nunber) of the taglibrary.
It is described as a dewey deci mal .

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el emrent nane="short - nane"
type="j 2ee: t | d- canoni cal - naneType" >

<xsd: annot at i on>
<xsd: docunent at i on>

Defines a sinple default nane that could be used by
a JSP authoring tool to create nanes with a
mmenoni cval ue; for exanple, it nay be used as the
preferred prefix value in taglib directives. Do
not use white space, and do not start with digits
or underscore

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent name="uri"
type="j 2ee: xsdAnyURI Type"
m nCccurs="0">

<xsd: annot at i on>
<xsd: docunent ati on>

Defines a public URI that uniquely identifies this
version of the taglibrary. Leave it enpty if it
does not apply.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent nane="val i dator"
type="j 2ee: val i dat or Type"
m nCccurs="0">

</ xsd: el enent >

<xsd: el enent name="li stener"
type="j 2ee: | i st ener Type"

JavaServer Pages 2.0 Specification

3-36

m nCccur s="0" maxQOccur s="unbounded" >
</ xsd: el ement >
<xsd: el ement nane="t ag"
type="j 2ee: tagType"
m nCccur s="0"
maxQOccur s=" unbounded"/ >
<xsd: el ement nane="tag-file"
type="j 2ee: tagFil eType"
m nCccur s="0"
maxCccur s="unbounded"/ >
<xsd: el ement nanme="function"
type="j 2ee: functi onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el ement nanme="t agl i b- ext ensi on"
type="j 2ee: tl d- ext ensi onType"
m nCccur s="0"
maxQOccur s=" unbounded" >

<xsd: annot at i on>
<xsd: docunent at i on>

Taglib extensions are for tool use only and must not affect
t he behavi or of a container

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="version"
type="j 2ee: dewey- ver si onType"
fixed="2.0"
use="requi red">

<xsd: annot at i on>
<xsd: docunent at i on>

Descri bes the JSP version (nunber) this taglibrary
requires in order to function (dewey decinal)

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd:attribute>

JavaServer Pages 2.0 Specification

3-37

<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ EEE RS EEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEES -

<xsd: conpl exType nane="val i dat or Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

A validator that can be used to validate
the conformance of a JSP page to using this tag library is
defined by a validatorType.

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nanme="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0"
maxQccur s="unbounded"/ >
<xsd: el enent nanme="val i dat or-cl ass"
type="j 2ee: fully-qualified-classType">

<xsd: annot at i on>
<xsd: docunent at i on>

Defines the TagLi braryValidator class that can be used
to validate the confornance of a JSP page to using this
tag library.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el enent name="init - parant
type="j 2ee: param val ueType"
m nCccur s="0" maxCccur s="unbounded" >

<xsd: annot ati on>
<xsd: docunent ati on>

The init-param el ement contains a nanme/val ue pair as an
initialization param

JavaServer Pages 2.0 Specification

3-38

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:|D'/>
</ xsd: conpl exType>

<| - Kkhkkkkkhkkhkhkkkkhkkhhhkkkkhhhkhkhkkhhhhkhkkhhhhkhkhkhhhkhkhkhhhkhkhhhhhkhhhhxk

<xsd: conpl exType nanme="vari abl e- scopeType" >

<xsd: annot at i on>
<xsd: docunent ati on>

This type defines scope of the scripting variable.
TagExtralnfo for details. The allowed val ues are,
"NESTED', "AT_BEG N' and "AT_END'.

</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuneration val ue="NESTED'/ >
<xsd: enuneration val ue="AT_BEGQ N'/ >
<xsd: enuneration val ue="AT_END'/ >
</ xsd:restriction>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<| - R I S R S I

<xsd: conpl exType nanme="vari abl eType" >

<xsd: annot ati on>
<xsd: docunent ati on>

>

See

>

The vari abl eType provides information on the scripting
vari abl es defined by using this tag. It is a (translation

time) error for a tag that has one or nore variable

subel enents to have a TagExtralnfo class that returns a

non-null value froma call to getVariablelnfo().

The subel ements of variabl eType are of the form

description Optional description of this

JavaServer Pages 2.0 Specification

scope

vari abl e
name- gi ven The variabl e nane as a constant
nane-fromattribute The name of an attribute whose

(translation tine) value wll

gi ve the nane of the

vari able. One of nanme-given or
name-fromattribute is required

vari abl e- cl ass Nanme of the class of the variable.

java.lang. String is default.

decl are Whet her the variable is declared

or not. True is the default

defined. NESTED is default

The scope of the scripting varaible

</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nanme="descri ption"
type="j 2ee: descri pti onType"
m nCccur s="0" maxQccur s="unbounded"/ >
<xsd: choi ce>
<xsd: el ement nane="nane- gi ven"
type="j 2ee:java-identifierType">

<xsd: annot ati on>
<xsd: docunent ati on>

The nane for the scripting variable

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
<xsd: el ement nane="nane-fromattri bute"

type="j 2ee:java-identifierType">

<xsd: annot ati on>
<xsd: docunent ati on>

JavaServer Pages 2.0 Specification

3-39

3-40

The nanme of an attribute whose

(translation-tinme) value will give the nane of
the variabl e.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >
</ xsd: choi ce>
<xsd: el enent nane="vari abl e- cl ass"
type="j 2ee:fully-qualified-classType"
m nCccur s="0">

<xsd: annot ati on>
<xsd: docunent ati on>

The optional name of the class for the scripting
variable. The default is java.lang.String

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el enent nanme="decl are"
type="j 2ee: generi c- bool eanType"
m nCccur s="0">

<xsd: annot at i on>
<xsd: docunent ati on>

Whet her the scripting variable is to be defined
or not. See TagExtralnfo for details. This
element is optional and "true" is the default.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el ement nane="scope"
type="j 2ee: vari abl e- scopeType"
m nCccur s="0">

<xsd: annot at i on>
<xsd: docunent at i on>

JavaServer Pages 2.0 Specification

341

The elenent is optional and "NESTED' is the default.

</ xsd: docunent at i on>
</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

</ xsd: schema>

JSP.C.2DTD for TLD,JSP 1.2

ThefollowingisaDTD describing a Tag Library Descriptor filein JSP 1.2
format. Thisisthe same DTD as "http://java.sun.com/dtd/web-
jsptaglibrary_1 2.dtd", except for some formatting changes to extract comments
and make them more readable:

<l--

This is the DTD defining the JavaServer Pages 1.2 Tag Library descriptor (.tld)
(XML) file format/syntax.

A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
file, along with the appropriate implementation classes and other resources re-
quired to implement the actions defined therein. When deployed inside a JAR file,
the tag library descriptor files must be in the META-INF directory, or a subdirec-
tory of it. When deployed directly into a web application, the tag library descriptor
files must always be in the WEB-INF directory, or some subdirectory of it.
Packaged tag libraries must have at least one tag library descriptor file. The JSP
1.1 specification allowed for only a single TLD, in META-INF/taglib.tld, but in JSP
1.2 multiple tag libraries are allowed.

Use is subject to license terms.

-->

<INOTATION WEB-JSPTAGLIB.1_2 PUBLIC “-//Sun Microsystems, Inc.//[DTD
JSP Tag Library 1.2//EN">

<l--
Al JSP 1.2 tag library descriptors must include a DOCTYPE of the following form:

JavaServer Pages 2.0 Specification

3-42

<IDOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//[DTD JSP Tag Library
1.2//EN" "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
-->

<l--
The taglib element is the document root, it defines:

tlib-version the version of the tag library implementation
jsp-version the version of JSP the tag library depends upon
short-name a simple default name that could be used by a JSP authoring

tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives

uri a uri uniquely identifying this taglib

display-name the display-name element contains a short name that is intend-
ed to be displayed by tools

small-icon optional small-icon that can be used by tools

large-icon optional large-icon that can be used by tools

description a simple string describing the “use” of this taglib, should be user
discernable

validator optional TagLibraryValidator information

listener optional event listener specification

>

<!IELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-name?,
small-icon?, large-icon?, description?, validator?, listener*, tag+) >

<IATTLIST taglib
id ID #IMPLIED
xmins CDATA #FIXED *“http://java.sun.com/JSP/TagLibraryDescriptor”>
<I--
The value of the tlib-version element describes this version (number) of the tagl-
ibrary. This element is mandatory.

#PCDATA ::= [0-9]%{ “[0-9] }0..3
>

<!ELEMENT tlib-version (#PCDATA)

JavaServer Pages 2.0 Specification

3-43

<l--

The value of the jsp-version element describes the JSP version (number) this
taglibrary requires in order to function. This element is mandatory. The value that
should be used for JSP 1.2 is "1.2" (no quotes).

#PCDATA ::= [0-9]*{ “[0-9] }0..3

>

<IELEMENT jsp-version (#PCDATA) >

<l--

The value of the short-name element is a name that could be used by a JSP au-
thoring tool to create names with a mnemonic value; for example, it may be used
as the prefered prefix value in taglib directives.

Do not use white space, and do not start with digits or underscore.

#PCDATA ::= NMTOKEN
>

<IELEMENT short-name (#PCDATA) >

<l--
The value of the uri element is a public URI that uniquely identifies the exact se-

mantics of this taglibrary.
>

<IELEMENT uri (#PCDATA) >

<I--
The value of the description element is an arbitrary text string describing the tag
library.

->

<IELEMENT description(#PCDATA) >

<l--
The validator element provides information on an optional validator that can be

used to validate the conformance of a JSP page to using this tag library.
-—->

<IELEMENT validator (validator-class, init-param*, description?) >

JavaServer Pages 2.0 Specification

<I--
The validator-class element defines the TagLibraryValidator class that can be

used to validate the conformance of a JSP page to using this tag library.
>

<IELEMENT validator-class (#PCDATA) >

<l--

The init-param element contains a name/value pair as an initialization param.
>

<!IELEMENT init-param (param-name, param-value, description?)>

<!--

The param-name element contains the name of a parameter.
-->

<IELEMENT param-name (#PCDATA)>

<!--

The param-value element contains the value of a parameter.
-->

<IELEMENT param-value (#PCDATA)>

<l--
The listener element defines an optional event listener object to be instantiated

and registered automatically.
>

<!IELEMENT listener (listener-class) >

<!--
The listener-class element declares a class in the application that must be regis-
tered as a web application listener bean.

See the Servlet 2.3 specification for details.
-->

<IELEMENT listener-class (#PCDATA) >

JavaServer Pages 2.0 Specification

3-45

<l--

The tag element defines an action in this tag library. The tag element has one at-
tribute, id.

The tag element may have several subelements defining:

name The unique action name
tag-class The tag handler class implementing javax.servlet.jsp.tagext.Tag
tei-class An optional subclass of javax.servlet.jsp.tagext. TagExtralnfo

body-content The body content type
display-name A short name that is intended to be displayed by tools

small-icon Optional small-icon that can be used by tools

large-icon Optional large-icon that can be used by tools

description Optional tag-specific information

variable Optional scripting variable information

attribute All attributes of this action

example Optional informal description of an example of a use of this ac-
tion.

>

<IELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?,
small-icon?, large-icon?, description?, variable*, attribute*, example?) >

<l--
The tag-class element indicates the subclass of javax.serlvet.jsp.tagext.Tag that
implements the request time semantics for this tag. This element is required.

#PCDATA ::= fully qualified Java class name
>

<IELEMENT tag-class (#PCDATA) >

<l--

The tei-class element indicates the subclass of javax.servlet.jsp.tagext. TagEx-
tralnfo for this tag. The class is instantiated at translation time. This element is
optional.

#PCDATA ::= fully qualified Java class name
-—>

<IELEMENT tei-class (#PCDATA) >

JavaServer Pages 2.0 Specification

3-46

<!--

The body-content element provides provides information on the content of the
body of this tag. This element is primarily intended for use by page composition
tools.

There are currently three values specified:

tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax

empty The body must be empty

This element is optional; the default value is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<IELEMENT body-content (#PCDATA) >

<l--
The display-name element contains a short name that is intended to be displayed

by tools.
>

<!IELEMENT display-name (#PCDATA) >

<l--

The large-icon element contains the name of a file containing a large (32 x 32)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.

The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.

->

<IELEMENT large-icon (#PCDATA) >

<l--

The small-icon element contains the name of a file containing a small (16 x 16)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.

The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.

>

<IELEMENT small-icon (#PCDATA) >

JavaServer Pages 2.0 Specification

3-47

<l--
The example element provides an informal description of an example of the use

of a tag.
-->

<IELEMENT example (#PCDATA) >

<l--
The variable element provides information on the scripting variables defined by
this tag.

It is a (translation time) error for an action that has one or more variable subele-
ments to have a TagExtralnfo class that returns a non-null object.

The subelements of variable are of the form:
name-given The variable name as a constant

name-from-attribute The name of an attribute whose (translation time) value will
give the name of the variable. One of name-given or name-from-attribute is re-

quired.

variable-class Name of the class of the variable. java.lang.String is default.
declare Whether the variable is declared or not. True is the default.
scope The scope of the scripting variable defined. NESTED is de-
fault.

-->

<IELEMENT variable ((name-given | name-from-attribute), variable-class?, de-
clare?, scope?, description?) >

<I--
The name-given element provides the name for the scripting variable.

One of name-given or name-from-attribute is required.
-—->

<IELEMENT name-given (#PCDATA) >

<l--
The value of the name-from-attribute element is the name of an attribute whose
(translation-time) value will give the name of the variable.

One of name-given or name-from-attribute is required.
>

<IELEMENT name-from-attribute (#PCDATA) >
JavaServer Pages 2.0 Specification

3-48

<!--
The variable-class element is the name of the class for the scripting variable.

This element is optional; the default is java.lang.String.
>

<IELEMENT variable-class (#PCDATA) >

<l--
The value of the declare element indicates whether the scripting variable is to be
defined or not. See TagExtralnfo for details.

This element is optional and is the default is true.
-->

<IELEMENT declare (#PCDATA) >

<!--
The value of the scope element describes the scope of the scripting variable.

See TagExtralnfo for details.

This element is optional and the default value is the string “NESTED”. The other
legal values are “AT_BEGIN” and “AT_END”.
>

<!IELEMENT scope (#PCDATA) >

<!--
The attribute element defines an attribute for the nesting tag.

The attributre element may have several subelements defining:
name the name of the attribute

attribute whether the attribute is required or optional
rtexpravalue whether the attribute is a runtime attribute

type the type of the attributes
description a description of the attribute
>

<!IELEMENT attribute (name, required? , rtexprvalue?, type?, description?) >

JavaServer Pages 2.0 Specification

3-49

<I--
The name element defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
>

<IELEMENT name(#PCDATA) >

<l--
The value of the required element indicates if the nesting attribute is required or
optional. This attribute is optional and its default value is false.

#PCDATA ::=true | false | yes | no
>

<IELEMENT required (#PCDATA) >

<l--

The value of the rtexpvalue element indicates if the value of the attribute may be
dynamically calculated at request time, as opposed to a static value determined
at translation time. This attribute is optional and its default value is false

#PCDATA ::=true | false | yes | no
-—->

<IELEMENT rtexprvalue (#PCDATA) >

<I--
The value of the type element describes the Java type of the attributes value.

For static values (those determined at translation time) the type is always ja-
va.lang.String.

>

<IELEMENT type (#PCDATA) >

<!-- ID attributes -->

<IATTLIST tlib-version id ID #IMPLIED>

<IATTLIST jsp-version id ID #IMPLIED>

<IATTLIST short-name id ID #IMPLIED>

<IATTLIST uriid ID #IMPLIED>

JavaServer Pages 2.0 Specification

3-50

<IATTLIST description id ID #IMPLIED>
<IATTLIST example id ID #IMPLIED>
<IATTLIST tag id ID #IMPLIED>
<IATTLIST tag-class id ID #IMPLIED>
<IATTLIST tei-class id ID #IMPLIED>
<IATTLIST body-content id ID #IMPLIED>
<IATTLIST attribute id ID #IMPLIED>
<IATTLIST name id ID #IMPLIED>
<IATTLIST required id ID #IMPLIED>
<IATTLIST rtexprvalue id ID #IMPLIED>
<IATTLIST param-name id ID #IMPLIED>
<IATTLIST param-value id ID #IMPLIED>
<IATTLIST listener id ID #IMPLIED>

<IATTLIST listener-class id ID #IMPLIED>

JSP.C.3DTD for TLD,JSP 1.1

Thefollowing isaDTD describing a Tag Library Descriptor filein JSP 1.1
format. Thisisthe same DTD as http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd,
except for some formatting changes to extract comments and make them more
readable:

JavaServer Pages 2.0 Specification

3-51

<l--
This is the DTD defining the JavaServer Pages 1.1 Tag Library descriptor (.tld)
(XML) file format/syntax.

A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
(taglib.tld) file in the META-INF subdirectory, along with the appropriate imple-
menting classes, and other resources required toimplement the tags defined
therein.

Use is subject to license terms.
-->

<l--

The taglib tag is the document root, it defines:

tlibversion the version of the tag library implementation

jspversion the version of JSP the tag library depends upon

shorthname a simple default short name that could be used by a JSP authoring
tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives

uri a uri uniquely identifying this taglib

info a simple string describing the “use” of this taglib, should be user dis-
cernable

>

<IELEMENT taglib (tlibversion, jspversion?, shortname, uri?, info?, tag+) >

<IATTLIST taglib id ID #IMPLIED
xmins CDATA #FIXED
“http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd”

<l--
Describes this version (number) of the taglibrary (dewey decimal)

#PCDATA ::= [0-9]*{ “[0-9] }0..3

>

<IELEMENT tlibversion (#PCDATA) >

JavaServer Pages 2.0 Specification

3-52

<I--
Describes the JSP version (number) this taglibrary requires in order to function
(dewey decimal)

The defaultis 1.1

#PCDATA ::= [0-9]%{ “[0-9] }0..3
>

<IELEMENT jspversion (#PCDATA) >

<!--

Defines a short (default) shortname to be used for tags and variable names used/
created by this tag library. Do not use white space, and do not start with digits or
underscore.

#PCDATA ::= NMTOKEN
>

<IELEMENT shortname (#PCDATA) >

<l--

Defines a public URI that uniquely identifies this version of the taglibrary Leave it
empty if it does not apply.

>

<IELEMENT uri (#PCDATA) >

<!--

Defines an arbitrary text string descirbing the tag library
>

<IELEMENT info(#PCDATA) >

<I--

The tag defines a unique tag in this tag library, defining:

- the unique tag/element name

- the subclass of javax.servlet.jsp.tagext.Tag implementation class
- an optional subclass of javax.servlet.jsp.tagext. TagExtralnfo

- the body content type (hint)

- optional tag-specific information

- any attributes

>

<IELEMENT tag (hame, tagclass, teiclass?, bodycontent?, info?, attribute*) >

JavaServer Pages 2.0 Specification

3-53

<I--
Defines the subclass of javax.serlvet.jsp.tagext.Tag that implements the request
time semantics for this tag. (required)

#PCDATA ::= fully qualified Java class name
-—->

<IELEMENT tagclass (#PCDATA) >

<l--
Defines the subclass of javax.servlet.jsp.tagext. TagExtralnfo for this tag. (option-
al)

If this is not given, the class is not consulted at translation time.

#PCDATA ::= fully qualified Java class hame
>

<IELEMENT teiclass (#PCDATA) >

<l--
Provides a hint as to the content of the body of this tag. Primarily intended for use
by page composition tools.

There are currently three values specified:

tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax

empty The body must be empty. The default (if not defined) is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<IELEMENT bodycontent (#PCDATA) >

<l--
The attribute tag defines an attribute for the nesting tag

An attribute definition is composed of:

- the attributes name (required)

- if the attribute is required or optional (optional)

- if the attributes value may be dynamically calculated at runtime by a scriptlet ex-
pression (optional)

-—->

JavaServer Pages 2.0 Specification

<IELEMENT attribute (name, required? , rtexprvalue?) >

<I--
Defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
>

<IELEMENT name(#PCDATA) >

<l--
Defines if the nesting attribute is required or optional.

#PCDATA ::=true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.
-->

<IELEMENT required (#PCDATA) >

<l--

Defines if the nesting attribute can have scriptlet expressions as a value, i.e the
value of the attribute may be dynamically calculated at request time, as opposed
to a static value determined at translation time.

#PCDATA ::=true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value
>

<IELEMENT rtexprvalue (#PCDATA) >
<IATTLIST tlibversion id ID #IMPLIED>
<IATTLIST jspversion id ID #IMPLIED>
<IATTLIST shortname id ID #IMPLIED>
<IATTLIST uri id ID #IMPLIED>
<IATTLIST info id ID #IMPLIED>
<IATTLIST tag id ID #IMPLIED>

<IATTLIST tagclass id ID #IMPLIED>

JavaServer Pages 2.0 Specification

3-55

<IATTLIST teiclass id ID #IMPLIED>
<IATTLIST bodycontent id ID #IMPLIED>
<IATTLIST attribute id ID #IMPLIED>
<IATTLIST name id ID #IMPLIED>
<IATTLIST required id ID #IMPLIED>

<IATTLIST rtexprvalue id ID #IMPLIED>

JavaServer Pages 2.0 Specification

3-56

JavaServer Pages 2.0 Specification

ceeenorJOP. D

Page Encoding Detectioﬁ

T his appendix details the algorithm containers are required to use in order to
determine the character encoding for a JSP file. See Chapter JSP4, “International -
ization Issues’ for details on wherethisalgorithm isused. The algorithm isdesigned
to maximize convenience to the page author, while preserving backwards compati-
bility with previous versions of the JSP specification.

JSP.D.1Detection Algorithm

The following is a complete though unoptimized algorithm for determining the
character encoding for a JSP file. JSP containers may use an optimized version of
this algorithm, but it must detect the same encoding as the algorithm in all cases.

1. Decide whether the source file is a JSP page in standard syntax or a JSP
document in XML syntax.

a. If thereisa<is-xml> element in a <jsp-property-group> that names this
file, then if it has the value "true", the file is a JSP document, and if it
has the value "false", the file is not a JSP document.

b. Otherwisg, if the file name has the extension "jspx", the file is a JSP
document.

c. Otherwise, try to find a <jsp:root> element in the file.

i. Determine theinitial encoding from the first four bytes of the file,
as described in appendix F.1 of the XML 1.0 specification. For the
byte sequence "3C 3F 78 6D", use ISO-8859-1; for the byte
sequence "4C 6F A7 94", use IBM037; for al other cases, use the
UTF-* or UCS-* encoding given in the appendix.

JavaServer Pages 2.0 Specification 3-57

3-58

d.

ii. Read the file using the initial encoding and search for a <jsp:root>
element. If the dement is found and is the top element, the file is
a JSP document in XML syntax

Otherwise, the file is a JSP page in standard syntax.

2. Reset thefile.

3. If thefileis a JSP page in standard syntax, use these steps.

a

g.

Check whether there is a JSP configuration element <page-encoding>
whose URL pattern matches thisfile.

Read the file using the initial encoding and search for a pageEncoding
attribute in a page declaration. The specification requires the attribute
to be found only if it is not preceded by non-ASCII characters, so
simplified implementations are allowed.

Report an error if there are a <page-encoding> configuration element
whose URL pattern matches this file and a pageEncoding attribute,
and the two name different encodings.

If there is a <page-encoding> configuration element whose URL
pattern matches thisfile, the page character encoding is the one named
in this element.

Otherwise, if there is a pageEncoding attribute, the page character
encoding is the one named in this attribute.

Otherwise, read the file using the initial encoding and search for a
charset value within a contentType attribute in a page declaration. If it
exists, the page character encoding is the one named in this charset
value. The specification requires the attribute to be found only if it is
not preceded by non-ASCII characters, so smplified implementations
are alowed.

Otherwise, the page character encoding is 1SO-8859-1.

4. If thefileis a JSP document in XML syntax, use these steps.

a

Determine the page character encoding as described in appendix F.1 of
the XML 1.0 specification. Note whether the encoding was named in
the encoding attribute of the XML prolog or just derived from the
initia bytes.

Check whether there is a JSP configuration el ement <page-encoding>
whose URL pattern matches this file.

JavaServer Pages 2.0 Specification

3-59

¢. Read the file using the detected encoding and search for a
pageEncoding attribute in a <jsp:directive.page> € ement.

d. Report an eror if any of the following conditions is met:

i. The XML prolog names an encoding and there is <page-
encoding> configuration el ement whose URL pattern matches this
file and which names a different encoding.

ii. The XML prolog hames an encoding and there is a pageEncoding
atribute which names a different encoding.

iii. There are a <page-encoding> configuration element whose URL
pattern matches thisfile and a pageEncoding attribute, and the two
name different encodings.

5. Reset thefile and read it using the page character encoding.

JavaServer Pages 2.0 Specification

3-60

JavaServer Pages 2.0 Specification

crnenor JOP E

Changeé

T his appendix lists the changes in the JavaServer Pages specification. This
appendix is non-normative.

JSP.E.1Changes between JSP 2.0 PFD3 and JSP 2.0 Final

* Minor typos and clarifications.
APl Changes:

- Changed javax.servlet.jsp.tagext.JspFragment from an interface to an ab-
stract class. Made JspFragment.invoke() abstract.

- Added JspFragment.getJspContext() method.

» Added section on compatibility and porting issues between JSP 1.2 and JSP
2.0 to Preface.

e Minor clarifications to JSR-45 line number mapping guidelines.
* Clarified use of <jsp:output> in tag files.

» Added doctype-root-element, doctype-public and doctype-system propertiesto
<jsp:output> for outputting DOCTY PE in JSP XML sytnax.

* Requiresthat the JSP stratum is the default, for JSR-45 debugging.
» Added 118N detection algorithm appendix.
* Added element structure diagrams for TLD schema.

» Removed requirement on ordering of attribute setter calls, except for
<jsp:attribute>.

JavaServer Pages 2.0 Specification 3-61

3-62

Clarifiedthat aTLD isinvalid if it specifies"JSP" asthe <body-content> for a
SimpleTag extension.

Made the JSR-45 requirement optional.
Clarified ranges of EL integer and floating point literals.

Clarified semantics for cross-syntax trandation-time includes (between stan-
dard and XML syntaxes). Added three examplesto illustrate these semantics.

Loosened checking for duplicate page directive attributes and duplicate taglib
directive declarations to make static includes more useful. Duplicates are now
okay so long as the values are identical in both places.

Re-enabled preludes and codas for JSP Documents (XML syntax).

Removed specia behavior of theid attribute for custom tags. Virtually no con-
tainersimplement this feature and it was thought solidifying this requirement
in JSP 2.0 would berak applications.

Clarified that the uri passed to TagLibraryValidator.validate() is the uri in the
XML View, not necessarily the value of the uri attribute in the taglib directive.

JSP.E.2Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3

» Minor typos and clarifications.

» Added\$ asaway to quote $ in template text and attribute values, both in

standard and XML syntaxes. This enabled quoting of EL expressions. Quot-
ing of $ isdisabled for pages where EL isignored, for backwards compatibil-
ity. Described the XML view for quoting EL expressions.

» Changestothe API:

« NullPointerException must be thrown for null name in various methods.
- Allow null passed as default prefix in EL API to indicate a prefix is required.

+ SimpleTagSupport: Made jspBody and jspContext fields private. Made
getJspBody() and getJspContext() accessors protected.

- ExpressionEvaluator: Changed so that only one EL expression can be parsed
or evaluated at atime, with no intermixed static text. Removed defaultPrefix
parameters and changed so that FunctionMappers can mutate between Ex-
pressionEvaluator.parseExpression() and Expression.evaluate().

+ Updated javadocsfor Jspwriter to indicate that the resulting text iswritten to
the buffer or underlying writer directly, and not converted to the platform’s

JavaServer Pages 2.0 Specification

3-63

default encoding first, which would make no sense in this context.
» Changesto Tag Library Descriptor (TLD):
- Added descriptionGroup, example and extension € ements to <tag-file>.

- Moved definitions of j2ee:extensibleType and j2ee:tld-extensionType to web-
jsptaglibrary_2_0.xsd.

- Added function-extension €lement.

+ Updated tag-name-uniqueness to check for uniqueness across name ele-
ments both in tag and tag-file elements. Removed tag-file-name-uniqueness.

- Removed capital versions of TAGDEPENDENT, EMPTY, and SCRIPTLESS
enumerations in body-contentType.

- Reformatted indentation.
- Added example of how to write aschemafor aTLD extension.
» Changesto the Expression Language (EL):
- Clarified that the container must check EL syntax at translation time.
- Removed rules for escaping EL expression output. in EL chapter.
- Added conditional operator (A ?B : C).
- Added coercion rules for target type Long.
- The empty operator can how be applied to any Collection.

- Inall cases, omitting the prefix of afunction now meansthe function is as-
sociated with the default namespace.

e EBNF Grammar Changes:
- Better handling for syntax errors for unmatched action tags
- Added logic to handle quoting EL expressions.

» Changed conversion rulesfor attribute values for the empty String " to match
EL semantics.

» Removed synchronization of variables from the page to the tag file, but kept
synchronization from tag file to page. Thisis consistent with classic tags.

» Changed the default value for the rtexprvalue attribute of the attribute directive
to true.

* 118N Changes:
+ During a <jsp:forward> or <jsp:include> the container is now required to en-
code the parameters using the character encoding from the request object.

JavaServer Pages 2.0 Specification

- Character encoding is now determined for each file separately, even if one
file includes another using the include directive.

 Changed the semantics of <is-xmlI> so that avalue of false simply indicatesthe
resource is not a JSP document, but rather a JSP page.

» Changed .jspx extension to only work with a Servlet 2.4 or greater web.xml.
» Synchronized behavior of error pages with the Servlet specification.

» Changed dynamic-attributes attribute of the tag directive to specify the name
of aMap to place the dynamic attributes into, instead of placing them directly
in the page scope. Dynamic attributes with auri are ignored.

» Added alias attribute and name-from-attribute mechanism for tag files.

» Clarified behavior of Tag Library Validators when namespaces are redefined
in JSP documents.

» Added non-normative guidelines for JSR-45 line number mapping.
* Clarified that DTD validation of JSP Documents must be done by containers.

* Clarified that in JSP Documents the prefix "jsp" is not fixed for the namespace
http://java.sun.com/JSP/Page.

» Clarified that, if '@ isnot acustom action, does not con-
tain a request-time attribute value whereas does.

JSP.E.3Changes between JSP 2.0 PFD and JSP 2.0 PFD2

* Minor typos and clarifications.

Clarified handling of non-String types when using <jsp:attribute>.

Clarified that JSP Configuration settings do not apply to tag files.

Changed the way EL expressions and Scripting is enabled/disabled:

- Removed isScriptingEnabled attribute from page/tag directive.

- Changed <scripting-enabled> JSP Configuration element to
<scripting-invalid>

- Changed <el-enabled> JSP Configuration element to <el-ignored>
- Changed isELEnabled to isELIgnored.

Clarified that EL expressions can be used to provide request-time attribute
values aswell.

JavaServer Pages 2.0 Specification

3-65

» Added agrammar for the <function-signature> element in the TLD.
« Clarified expected container behavior for variousillegal JSP code.

* Clarified JSP Configuration URL Patterns are as defined in the Servlet specifi-
cation.

» Clarified that for <jsp:invoke>, an lllegalStateException must occur if scope is
session and the calling page does not participate in a session.

* Clarified that invalid tag libraries must trigger a translation error.
« API Changes, including:

- Various javadoc clarifications to enhance testability.

- Added new pushBody(java.io.Writer) to JspContext.

- Moved popBody() from PageContext to JspContext.

- Removed ELException.toString()

- Adjusted semantics of SimpleTagSupport.findAncestorwithClass() so that it
uses the return value of TagAdapter.getAdaptee() when comparing class
types, and for the final return value.

« Clarified SkipPageException should not be manually thrown in JSP Pages.

+ Removed TagLibraryinfo.getTagdir() and corresponding protected attribute, as
it can never return anything useful. Also removed the JSP 2.0 version of the
constructor, since it only differed by itstagdir parameter.

- Removed pContext parameter from VariableResolver.resolveVariable().
- Changed ExpressionEvaluator from an interface to an abstract class.
- Changed Expression from an interface to an abstract class.

- Removed PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE and
APPLICATION_SCOPE constants from JspContext as they are duplicated in
PageContext.

* Various changes to schema for JSP portion of web.xml and to schema for
TLDs.

» Madeitillegal to refer to classes in the unnamed (a.k.a. default) package,
since JDK 1.4 has stopped supporting this.

* Reduced J2SE requirement to J2SE 1.3 for standalone containers and J2SE
1.4 for J2EE 1.4 containers. Made Unicode 3.0 and JSR-45 optiona when
running in J2SE 1.3 and required when running in J2SE 1.4.

JavaServer Pages 2.0 Specification

3-66

» JSR-45 SourceDebugAttribute extensions must now be generated for tag files
aswell.

* Internationalization Changes:

- Renamed the "L ocalization™" chapter to "Internationalization”, and rewroteit
for clarity, to provide more up-to-date information on JSTL, and to refer to
the Servlet specification for details of the ServietResponse behavior.

- |If the contentType charset defaultsto 1ISO-8859-1, it isn’t passed on to the
ServletResponse, S0 that implicit character encoding specifications can still
overrideit in Servlet 2.4.

- The page character encoding of documentsin XML syntax isnow always de-
tected in the XML specification. The pageEncoding attribute and/or page-en-
coding configuration element may be given, but must not disagree with the
XML prolog.

- XML views are encoded in UTF-8, and their pageEncoding attributeis set to
reflect this. Their contentType attribute is set to reflect the contentType that
the container will passto the ServletResponse.

» Moved details about XML view of tag filesto "JSP and XML" chapter.

» Changed the way variable synchronization worksin Tag Files and simple tag
handlers:

- Removed the Map parameter from JspFragment.invoke().

- Removed all JspFragment logic dealing with preparing and restoring the
page scope.
- Disalowed the use of <jsp:param> in <jsp:invoke> and <jsp:doBody>

- Removed fragment attribute from the variable directive (and from the vari-
able element in the TLD). Variables can no longer be scoped to a specific
fragment.

- Itisnow atranglation-time error to have avariable directive with aname-giv-
en attribute having the same value as the name attribute of an attribute direc-
tive, for agiven tag file trandation unit.

- Variables appear as page-scoped attributes local to the tag file, and are syn-
chronized with the calling JspContext at various points, depending on the
scope of the variable.

- Clarified that scripting variables are still declared for SimpleTag variables.
* Clarified what implicit objects are available to tag files.

» Removed the value attribute of the <jsp:body> standard action.

JavaServer Pages 2.0 Specification

3-67

» Added glossary entries for tag file, JSP fragment, named attribute, JSP seg-
ment, classic tag handler, simple tag handler, dynamic attribute, and JSP con-
figuration.

» Added <jsp:element> standard action to standard syntax as well.
» Expression Language
- Clarified behavior of EL functions whose implementations are declared to
return void.
- Specified expected behavior when an EL function throws an exception.

- Specified that the result of an EL expression in template text is quoted, to
help in preventing cross-site scripting attacks.

+ Maderulesfor coercing A to Number type N more specific.
« Added specia handling for al operatorsfor Biginteger and BigDecimal types.
* Specified stricter rulesfor tag handler instance reuse to improve compatibility.

» Changed behavior of JspException being thrown from dynamic attributes to
be handled as though the exception came from another setter method, instead
of having come from doStartTag() or doEndTag().

« Clarified how dynamic attributes behave with respect to namespaces.
» Relaxed the need to call setParent(null') on Simple Tag Handlers.

« Clarified that classic tag invocations with empty bodies will not cause body
methods to be invoked, even if the body content type for the tag is something
other than "empty".

» Some clarifications on how implicit taglib maps are constructed.
e EBNF Grammar Changes:

- Fixed EBNF for Params, Fallback productionsto allow for <jsp:body> to ap-
pear inside.

+ Clarified that <jsp:body> cannot be used to specify the body of <jsp:body> or
<jsp:attribute> and that <jsp:attribute> cannot be used to specify an attribute
of <jsp:attribute>.

- Clarified that XML-style attributes, such as those used in directives, can be
separated from each other by whitespace.

- Added <jsp:output> and <jsp:text> to grammar.
- Corrected definition of <jsp:param>.
- Fixed EBNF for <jsp:text>, <jsp:scriptlet>, <jsp:expression> and <jsp:decla-

JavaServer Pages 2.0 Specification

3-68

ration> so that CDATA sections are now allowed.
Added mayscript attribute to <jsp:plugin> tag.

Clarified <jsp-property-group> matching logic and how URL pattern overlaps
are resolved between <jsp-property-group> and <serlvet-mapping> €lements.

Clarified that a primitive cannot be used as the type of an attribute in tag files.

Clarified that the default for the language attribute of the page directiveis
java.

Moved <jsp:element> and <jsp:text> to Standard Actions chapter. Added
<jsp:output> to Standard Actions chapter.

Split XML chapter into two chapters - one on JSP Documents and one on
XML Views of JSP Pages and JSP Documents. Rewrote large portions of JSP
Documents chapter.

Changed semantics of SimpleTag so that if abody is not present, setJspBody()
isnot called (instead of passing null).

Added XML syntax for tag files (.tagx).
Made preludes and codas illegal for JISP Documents (XML syntax).

JSP.E.4Changes between JSP 2.0 PFD1a and JSP 2.0 PFD

Synchronized Standard Actions Chapter with JSP 1.2 Errata B.
Clarifications in the L ocalization Chapter to make encoding table clearer.
Changed TagAdapter to reduce confusion for container vendors.

EL Function implementations no longer need to be in a non-abstract class.
Updated BNF for EL to include functions.

Removed the restriction that the value attribute of <jsp:body> cannot be used
for Classic Tag Handlers.

Various typographical edits and clarifications (scattered).
In <jsp:doBody>, madeit illegal to specify a <jsp:param> with the same
name as a variable with a scope of AT_BEGIN or NESTED.

Provided a brief, non-normative overview of the SimpleTag lifecyclein the
SimpleTag javadocs for the convenience of developers.

JavaServer Pages 2.0 Specification

3-69

» Added new include() method to PageContext, with flush parameter.
» Removed name attribute from tag directive.

» Changed semantics of tag file packaging, and modified XML Schema accord-
ingly.

 Improved access to error information in error pages by adding javax.serv-
let.error.exception and providing access to other attributes viathe EL.

* Filled in many missing javadoc entries in the JSP API.

« Clarified that, for tag files, if an optional attribute is declared but not passed
in, no page-scoped variable is created (used to say valueisnull, whichisille-

gal).

» Added TLD Deployment extensions to Tag Extensions chapter and TLD.
These extensions are only for tool consumption.

* Cleaned up description of coercion rulesin Expression Language chapter.

« Clarified that Dynamic Attributes must be considered to accept request-time
expression values.

» Maodified the concept of JSP documents. In JSP 1.2 we had two quite separate
syntaxes and, for instance, elements like <jsp:expression> were not available
in classic JSP syntax. In JSP 2.0 the same basic syntax is available every-
where, but a JSP page can be tagged as being an XML document and thus can
benefit from XML concepts like well-formedness, validity, and entity defini-
tions.

» Added configuration property <is-xml> to indicate that a JSP pageis to be
treated as an XML document (JSP Document).

* Incorporated new XML syntax details in the Core Syntax and in the JSP doc-
uments chapter. Renamed Chapter 6 from JSP Documents to JSP and XML.

* XML syntax versions of all JSP elements are now also available in JSP pages
that are not JSP documents - thisis a, backward compatible, extension from
the JSP 1.2 semantics.

» Added default interpretation of extension ".jspx" to mean a JSP document
(and thus, an XML document).

» Added a <jsp:element> element to dynamically generate XML elements.

JavaServer Pages 2.0 Specification

3-70

Clarified that when a <jsp:useBean> element is used in an scriptless page, or
in an scriptless context (as in the body of an action so indicated), there are no
Java scripting variables created but instead an EL variableis created.

Clarified that EL expressions are availablein all attributes of both standard
and custom actions that accept run time expressions.

Changed <jsp:invoke> and <jsp:doBody> to accept var attribute to store frag-
ment output as a String. Changed semantics of varReader so that ${reader}
no longer echoes the contents of the Reader and no longer resets the stream.
The Reader can be passed to a custom action for further processing.

Can now use <jsp:attribute> for any standard or custom action attribute, and
can now use scriptlets and expressionsin the body of <jsp:attribute> where it
makes sense.

Removed fragment-input directive and replaced with anew fragment attribute
for the variable directive. Removed <fragment-attribute> and <fragment-in-
put> elementsin the TLD and replaced them with new <attribute> subelement
called <fragment>, and new <variable> subelement called <fragment>. Up-
dated APIsfor tag info accordingly.

Clarified that the implicit objects available to JSP pages under the EL are al-
way's available through the given names.

The EL Evaluator API has continued to evolve. Among the changes thereis
now a FunctionM apper abstraction, and parsing errors are now reported
through an EL ParseException. The VariableResolver Interface now is ob-
tained from the JspContext and abstracts its context.

JSP.E.5Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a

Removed restriction that containers must not reuse JspFragment instances.
Added javax.servlet.jsp.tagext.JspTag to the API chapter.

Fixed EBNF for Params, Fallback productions.

Fixed some minor typos (scattered).

Added uniqueness constraints to XML Schema for tag/name, tag-file/name
and function/name.

Added SkipPageException as an exception for indicating a page isto be
skipped in JspFragments and Simple Tag Handlers. Replaces SKIP_PAGE

JavaServer Pages 2.0 Specification

371

and EVAL_PAGE constants (only for Simple Tag Handlers - Classic Tag Han-
dlers still use those constants).

* Clarified <jsp:attribute> can be used to specify only request-time expression
attributes, and can be used for standard actions, and custom actionsimple-
mented using either Classic Tag Handlers or Simple Tag Handlers. Also clari-
fied the <jsp:body> value attribute can only be used for Simple Tag Handlers
and that <jsp:attribute> can be used to specify afragment even for Classic Tag
Handlers.

» Modified the page scope handling for Jsp Fragments and Tag Filesto be much
cleaner. Removed peekPageScope(), pushPageScope() and popPage-
Scope(). Instead, fragments are assumed to share the page scope with its con-
taining page, and tag files are required to create a Jsp Context Wrapper.

» Removed javax.servlet.jsp.tagext.AttributeNotSupportedException, and re-
placed it with asimple JspException which isjust as effective.

» Added two constructors to JspTagException to alow specification of the root
cause.

» Made jspContext and jspBody fields protected in SimpleTagSupport.

JSP.E.6Changes between JSP 2.0 PD1 and JSP 2.0 PD2

NOTE: JSP 2.0 PD2 was not released publicly.

e Updated 118N chapter to indicate Unicode 3.0 support and new details URL.
» Now requires JSR-45 strata name to be JSP.

* Clarified trim attribute of <jsp:attribute> isto be used at translation time.

* Fixed some minor typos (scattered).

* Renamed <el-evaluation> web.xml| element to <el-enabled>

» Reorganized new features. Created a cohesive chapter about Tag Files. Simple
Tag Handler details were moved to Tag Extensions and to the API chapter.
Standard Action description was moved to Standard Action chapter.

* Added aroot interface JspTag to cover Tag and SimpleTag.

* Moved al TLD DTDsto asingle "Tag Library Descriptor Schemas" Appen-
dix and added the new JSP 2.0 XML Schemato that appendix.

JavaServer Pages 2.0 Specification

3-72

Added JSP 2.0 XML Schema, which isimported by the Servlet 2.4 Web Ap-
plication Deployment Descriptor.

Updated page directive table and grammar to include isScriptingEnabled and
iSEL Enabled.

Added language, import, isScriptingEnabled and isEL Enabled attributes to
tag directive.

Applied fixes to EBNF grammar based on JSP 2.0 Preview EA1 experience

Clarified that jsp:id is now required and added TagExtralnfo.validate() and re-
quirement that container call it instead of TagExtralnfo.isvalid().

Reorganized slightly the EL chapter to emphasize the parts of the language
that do not depend on JSP details. Also removed the description of the APl in
that chapter: the javadoc-generated chapter is more complete.

Function names now need to be unique within atag library; arity isnot used to
disambiguate functions. Thiswas done to ssimplify the EL language and the
decision can berevisited in later releases based on usage experience.

Some refinements to the EL API: a new method was added that accepts a
VariableResolver instead of a JspContext, and the prefix/shortname map has
been split into two separate maps.

JSP.E.7Changes between JSP 2.0 CD2 and JSP 2.0 PD1

Moved all the JSP configuration description into its own chapter.
Reordered the EBNF description to be at the end of JSP 1.3.

Restored some pieces in the Syntax chapter that were lost in an editing opera-
tion. The only substantive piece was the description of the <include-prelude>
and <include-coda> elements, which are now in the JSP configuration chapter.

Added details on how to implement functionsin EL.

JavaServer Pages 2.0 Specification

3-73
JSP.E.8Changes between JSP 2.0 CD1 and JSP 2.0 CD2

E.8.1 Between CD2cand CD2

» Upgraded magjor version from JSP 1.3 to JSP 2.0, added section to the Preface
explaining change.

» Added directive examples to JSP Fragments chapter.

» Moved section describing passing attribute values via <jsp:attribute> and
<jsp:body> to syntax chapter and moved definitions of these two standard ac-
tions to Standard Actions chapter, from JSP Fragments chapter.

» Added optional scope attribute to <jsp:invoke> and <jsp:doBody>.

« Improved and simplified the way tag files are packaged. One can now package
tag filesin JARs or place them in a subdirectory of /WEB-INF/tags/ and ac-
cess them without specifying a uri.

« Changed SimpleTag to not extend Tag. Added TagAdapter to handle tag col-
laboration, and removed dependency on PageContext in SimpleTag. These
changes help make SimpleTag usable in environments other than Servlet re-
quest/response.

» Changed fragment invocation via <jsp:invoke> and <jsp:doBody> to be able
to expose their result as ajava.io.Reader object instead of a String. Thisis ex-
pected to be more efficient.

« Added <include-prelude> and <include-coda> €lements to <jsp-properties-
group>. Added a description in the Syntax Chapter.

* Added a getExpressionEvaluator() method to JspContext (and, thus, to Page-
Context).

» Added better description of JSP configuration information to different chap-
ters.

» Added to-do notes on EL to Syntax chapter, sketching where the information
will go.

* Renamed elEvaluation property of page directive. The new nameisisELEna-
bled, to be consistent with other properties.

JavaServer Pages 2.0 Specification

3-74

E.8.2 Between CD2b and CD2c

Fixed syntax table so that flush is optional in <jsp:include> standard action.
Integrated EL grammar with JSP EBNF.
Clarified doEndTag() description when SKIP_PAGE is returned.

Added dynamic-attributes element in tag directive to describe atag file that
accepts dynamic attributes.

Added SimpleTag, JspFragment, DynamicAttributes, AttributeNotSupporte-
dException, ExpressionEvaluator, and VariableResolver classesto API. Add-
ed new API chapter for javax.servlet.jsp.el package.

Added isScriptingEnabled directive and scripting-enabled JSP configuration el-
ement.

Renamed jsp-group JSP configuration element to jsp-properties-group. Clari-
fied conflict resolution rules.

Clarified direction with EL function - details still to come.
Added a chapter for EL API.

Added description of page-encoding JSP configuration element to Localiza-
tion chapter.

E.8.3 Between CD2a and CD2b

Reordered "Users of JSP Technology” and "Basic Concepts' in the Overview
section.

Added <jsp-config> element to web.xml as a parent element for <taglib>.
Added <jsp-group> as anew subelement to describe properties for a group of
JSP pages that are described using <url-pattern> and other elements. Current-
ly the only other element is <el-eval uation>, which can be used to describe
whether EL evaluation is active or not by default.

Modified the default rules for EL evaluation. Now, EL evaluation is always
off, but it is very easy to add evaluation on through a <jsp-group> element.

Various EBNF fixes
Fixed some typos in Example Scenario in JSP_Fragments chapter

Clarified issues on <jsp:forward> from within atag file?

JavaServer Pages 2.0 Specification

Clarified issues on <jsp:attribute> and whitespace

E.8.4 Changesbetween CD1and CD2a

Added a part structure to the specification description. This helps provide
guideance to the readers.

Added a mechanism to pass attributes whose names are not known until runt-
imeto tag handlers (Dynamic Attributes).

Added getPageContext() to SimpleTag.

Adjustment to i18n table to make defaul tl nputEncoding the default output en-
coding if unspecified.

Moved EBNF description from Fragments chapter to Core Syntax.

Improved EBNF description of <jsp:attribute> and <jsp:body>. Also, easier
to read valid standard action attribute sets.

JSP.E.9Changes between JSP 2.0 ED1 and JSP 2.0 CD1

Thisisthefirst Community Draft of the JSP 2.0 specification.

E.95 JSP Fragments, .tag Files, and Simple Tag Handlers

A new chapter on JSP fragments and supporting technologies such as the .tag
mechanism and simple tag handlers:

- JSP fragments allow a portion of JSP code to be encapsulated into a Java ob-
ject which can be passed around and evaluated zero or more times.

+ The .tag mechanism allows page authors to use JSP syntax to write Custom
Actions.

- Simple tag handlersintegrates tightly with JSP fragments and allows for a
much easier and more natural invocation protocol for tag extensions.

E.9.6 Expression Language Added

» Added the Expression Language chapter, equivalent to that rel eased in the JSP

Standard Tag Library (JSTL) Public Draft, Appendix A.

JavaServer Pages 2.0 Specification

3-75

3-76

» Updated the Expression Language chapter, including preliminary information
on the API to invoke the EL evaluator.

E.9.7 EBNF Fixes

Variousfixes to the EBNF, to handle CustomAction trandation errors correctly.
Improved readability by adding ATTR[] construct, to allow easier expression of
XML-style attributes that can appear in any order.

E.9.8 118N Clarifications

Incorporated JSP 1.2 errata_a. Clarified when container can call setContent-
Type() and how it is possible to dynamically affect content type and character encod-
ing from within a page or custom action.

E.99 Other Changes
» Updated Status, Preface, Changes chapters.
» Made support for jsp:id mandatory.
* Various typographical fixes.

JSP.E.10Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1

Thisisthefirst expert draft of the JSP 2.0 specification.

E.10.10Typographical Fixesand Version Numbers

Various typographical fixes that do not change any specification requirements,
and version number updates for JSP 2.0. Various things were fixed from JSP 1.2
such as missing page numbers, repeated table numbers, etc.

E.10.11Added EBNF Grammar for JSP Standard Syntax

A new section was added to the Syntax Chapter that presents asimple EBNF
grammar for the standard (i.e. non-XML) JSP syntax. The grammar isintended to
provide a concise syntax overview and to resolve any syntax ambiguities present in
the specification.

JavaServer Pages 2.0 Specification

E.10.12Added Usersof JavaServer Pages Section

A new section was added to the Overview Chapter that describes the various
classes of users that make use of JSP technology, describing their role, the technol-
ogy they're familiar with, and the sections of this specifications that are relevant to
them.

E.10.13Added Placeholdersfor Expression Language and Custom Actions
Using JSP

Two new chapters were added in anticipation of the new Expression Language
and Custom Actions Using JSP features.

E.10.14Added Requirement for Debugging Support

A new section was added to the JSP Container Chapter requiring support for
JSR-045 (" Debugging Support for Other Languages'). The precompilation protocol
was also updated.

JSP.E.11Changes Between PFD 2 and Final Dr aft

Thisisthefinal version approved by JCP Executive Comittee; the document
was updated to reflect that status. All change bars were reset.

E.11.15Added jsp:id mechanism

A new mechanism was added to alow willing JSP containers to provide
improved trangation-time error information from TagLibraryValidator classes. The
signature of TagLibraryValidator.validate() was modified dightly, and a new Valida-
tionMessage class was added. These objects act through a new attribute, jsp:id,
which is optionaly supported by a JSP container and exposed only through the
XML view of a JSP page. Chapter JSP.10, Chapter JSP.7 (Section JSP7.4.1.2) and
Chapter JSP.13 (Section JSP.13.9.6) were affected.

E.11.160Other Small Changes
* Made height & width be rtexprs. Section JSP.5.7 was affected.

» Added attribute value conversion from String literal to short and Short, and
corrected conversion for char and Character in Table JISP.1-11.

JavaServer Pages 2.0 Specification

3-77

3-78

+ Corrected a statement on the allowed return values for doStartTag() for Tag,
IterationTag and BodyTag.. PFD2 incorrectly indicated that "emtpy" tags
could only return SKIP_BODY; the correct statement is that tags whose body-
content is "empty" can only return SKIP_BODY.

E.11.17Clarification of role of id

The mandated interpretations of the "id" attribute in Section JSP 2.13.3 (that id
represents page-wide unique ids) and the "scope" attribute in Section JSP 2.13.4
(regarding the scope for the introduced variable€) were not enforced by most (per-
haps al?) containers, and were inconsistent with prevalent practicesin custom tag
library development. Essentially these sections were being interpreted as localized
statements about the jsp:useBean standard action. This has been made explicit and
the sections were moved to Chapter 5 to reflect that.

Sections JSP.2.13.3 and JSP2.13.4, and Chapter 4 were affected.

E.11.18Clarifications on Multiple Requests and Threading

* Clarify that TLV instances need be thread safe. This affected
Section JSP13.9.6.

 Clarify that atag handler instance is actively processing only one request at a
time; this happens naturaly if the tag handler isinstantiated afresh through
new() invocations, but it requires spelling once tag handler pooling isintro-
duced. This clarification affected Chapter JSP.13.

E.11.19Clarifications on JSP Documents
Several clarificationsin Chapter JSP6.
 Reafirmed that, in aJSP page in XML syntax, the URI for jsp core actionsis
important, not the prefix.
 Clarify that <?xml ... 2> isnot required (as indicated by the XML spec).
+ Clarified further the interpretation of whitespace on JSP documents.

E.11.20Clarificationson Well Known Tag Libraries

Clarified that atag library author may indicate, through the description
comment, that atag handler may expose at runtime only some subset of the
information described through the tag handler implementation class. Thisisuseful

JavaServer Pages 2.0 Specification

for specialized implementations of well-known tag libraries like the JSP standard
tag library. This clarification affected the description of the tag element in
Section JSP.7.3 and the description of Tag.setParent() and TagSupport.findAnces-
torwithClass().

Removed the last paragraph on Section JSP.7.3.9; we don’t have any plans to
remove the well-know URI mechanism.

In general cleaned up the presentation of the computation of the taglib map
between a URI and a TLD resource path; the previous version was clunky.

E.11.21Clarified Impact of Blocks

Clarified further the legal uses and the role of block constructs within scriptlets
and nested actions. This affected small portions of Sections JSP1.3.3, JSP9.4,
JSP9.4.4 and JSP.13.9.10.

E.11.220ther Small Clarifications

* Reafirmed more explicitly that the location of iconsisrelativeto TLD file.
Section JSP.7.3 was affected.

* Removed non-normative comment about JSR-045 in Section JSP.1.1.10.

» Removed the comment on errorPages needing to be JSP pages, they can also
be static objects. This affects Table JSP.1-8.

» Reaffirmed that event listenersin atag library are registered before the appli-
cation is started. This affects Section JSP.7.1.9.

« Clarify when the use of quoting conventionsis required for attribute values.
Clarified that request-time attribute values follow the same rules. This affects
Section JSP1.3.5, Section JSP.1.6 and Section JSP.1.14.1.

« Clarified the interpretation of relative specifications for include directives and
jsp:include and jsp:forward actions. This affected Section JSP.1.2.1,
Section JSP1.10.5, Section JSP.5.4 and Section JSP5.5

« Corrected the inconsistency on the precompilation protocol in
Section JSP.11.4.2 regarding whether the requests are delivered to the page or
not; they are not.

« Clarified that the <type> subelement of <attribute> in the TLD file should
match that of the underlying JavaBean component property.

JavaServer Pages 2.0 Specification

3-79

3-80

 Spelled out the use of Classl oader.getResource() to get at datafrom a TagL.i-
braryValidator class.

JSP.E.12Changes Between 1.2 PFD 1b and PFD 2

Change barsare used in almost all chaptersto indicate changes between PFD 1b
and PFD 2. The exception are Chapters 12 and 13 which are generated automati-
cally from the Java sources and have no change bars. Most changes are semantical,
but some of them are editorial.

E.12.23Added elementsto Tag Library Descriptor

The Tag Library Descriptor (TLD) was extended with descriptive information
that is useful to users of the tag library. In particular, a TLD can now be massaged
directly (e.g. using an XSLT stylesheet) into an end-user document.

A new <example> element was added, as an optional subelement of <tag>.
The existing <description> element was made a valid optional subelement of
<variable>, <attribute> and <validator>.

Section JSP.7.3 and Appendix JSP.B were affected. The TLD 1.2 DTD and
Schemas were also affected.

E.12.24Changed the way version information is encoded into TLD

The mechanism used to provide version information on the TLD was changed.
In the PFD the version was encoded into the namespace. In PFD2 the namespaceis
not intended to change unless there are non-compatible changes, and the version is
encoded into the <jsp-version> element, which is now mandatory. The new URI for
the namespace is "http://java.sun.com/JSP/TagL ibraryDescriptor".

Chapter JSP7 and Appendix JSP.B were affected.

E.12.25Assigning String literalsto Object attributes

Itisnow possibleto assign string literalsto an attribute that is defined as having
type Object, aswell asto a property of type Object. The valid type conversions are
now all described in Section JSP1.14.2, and used by reference in the semantics of
<jsp:setProperty>.

JavaServer Pages 2.0 Specification

3-81

E.12.26Clarification on valid namesfor prefix, action and attributes

We clarified the valid names for prefixes used in taglib directives, element
names used in actions, and attribute names.

E.12.27Clarification of details of empty actions

The JSP 1.1 specification distinguishes empty from non-empty actions,
athough the description could be better. Unfortunately, the JSP 1.2 PFD1 draft did
not improve the description. This draft improves the description by making it clear
what methods are invoked when.

Chapters 1, 7 and 13 were affected.

E.12.28Correctionsrelated to XML syntax

We clarified severa issues related to the XML syntax for JSP pages and to the
XML view of aJSP page. Most changes are in Chapter JSP6.

» Removed an inexistant flush attribute in theinclude directive at Chapter JSP.6.

» Changed the name of jsp:cdatato jsp:text, since its semantics are very similar
to the text element in XSLT.

» Changed the way the version information is encoded into the XML syntax;
the URI used now is not version-specific and instead there is arequired ver-
sion attribute of jsp:root.

* Clarified that JSP commentsin a JSP page in JSP syntax are not preserved on
the XML view of the page.

* Clarified that JSP pagesin XML syntax should have no DOCTY PE.
« Clarified the treatment of include directivesin the XML view of a JSP page.

 Clarified theformat of the URIsto use in xmlns attributesfor taglib directives,
and corrected Appendix JSP.B.

E.12.290ther changes

We clarified severa other inconsistencies or mistakes

JavaServer Pages 2.0 Specification

3-82

» Explicitly indicated which attributes are reserved (Section JSP.1.3.5) and
which prefixes are reserved (Section JSP.1.10.2).

» AddacommenttotheDTD for the TLD indicating that aDOCTY PE isneeded
and what itsvalueis. No changesto the value.

» Removed the paragraph at the end of Section JSP.7.3.9 that used to contain
non-normative comments on the future of "well kwown URIs".

* Corrected the description of the valid values that can be passed to the flush at-
tribute of the include action in Section JSP5.4.

* Clarified that <jsp:param> can only appear within <jsp:forward>, <jsp:in-
clude>, and <jsp:params>.

* Clarified that <jsp:params> and <jsp:fallback> can only appear within
<jsp:plugin>.

» Resolved aconflict in Section JSP.5.4 between the Servlet and the JSP specifi-
cation regarding how to treat modifications to headersin included actions.

» Section 10.1.1 in PFD1 incorrectly described the valid return values for
doStartTag() in tag handlers that implement the BodyTag interface. The cor-
rect valid values are SKIP_BODY, EVAL_BODY _INCLUDE and
EVAL_BODY_BUFFER. Section now indicatesthis.

JSP.E.13Changes Between 1.2 PFD and 1.2 PFD 1b
PFD 1bisadraft that has mostly formating and afew editorial changes. This
draft is shown only to make it smpler to correlate changes between later drafts and

the previous drafts.
Change bars are used to indicate changes between PFD 1 and PFD 1b.

JSP.E.14Changes Between 1.2 PD1 and 1.2 PFD

The following changes ocurred between the Public Draft 1 and the Proposed
Final Draft versions of the JSP 1.2 specification.

JavaServer Pages 2.0 Specification

3-83

E.14.30Deletions

* Removed the resetCustomAttributes() method.

E.14.31Additions
» Added constructors and methods to JspException to support a rootCause (par-
alleling the ServletException).
» Added a PageContext.handleException(Throwable) method.
» Added references to JSR-045 regarding debugging support.

* Added new TryCatchFinally interface to provide better control over excep-
tionsin tag handlers.

e Added an implicit URI to TLD map for packaged tag libraries. This aso pro-
vides support for multiple TLDs inside asingle JAR file.

» Added pageEncoding attribute to page directive.
¢ Added material to Chapter JSPA4.
» Added TagValidatorinfo class.

» Added Section JSP.1.1.9 with a suggestion on extension convention for top
and included JSP files.

E.14.32Clarifications

A tag handler object can be created with asimple “new()”; it needs not be a
fully fledged Beans, supporting the complete behavior of the ja-
va.beans.Beans.instantiate() method.

* Removed the“recommendation” that the <uri>elementinaTLD beaURL to
anything.

« Clarified that extension dependency information in packaged tag libraries
should be honored.

« Clarified invocation and lifecycle of TagLibraryValidator.
« Clarified where TLDs may appear in a packaged JAR file.
 Clarified when are response.getWriter().

JavaServer Pages 2.0 Specification

E.14.33Changes

Moved a couple of chapters around
Improved and clarified Chapter JSP6.
Moved the include directive back into Chapter JSP.1.

Renamed javax.servlet.jsp.tagext.Pagel nfo to javax.servlet.jsp.tagext.PageDa-
ta (for consistency with existing TagData).

Added initialization parameters to TagLibrarylnformation validation in TLD,
adding a new <validator> element, renaming <validatorclass> to <validator-
class> for consistency, and adding <init-param> as in the Servlet web.xml de-
scriptor.

Added method to pass the initialization parameters to the validator class and
removed the use of TagLibrarylnfo. Added prefix and uri String argumentsto
validate() method.

Changed element namesin TLD to consistently follow convention. New
names are <tag-class>. <tei-class>, <tlib-version, <jsp-version>, <short-
name> and <body-content>. <info> was renamed <description>.

JSP.E.15Changes Between 1.1 and 1.2 PD1

The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

E.15.340rganizational Changes

Chapter 8 and 10 are now generated automatically from the javadoc sources.

Created a new document to allow longer descriptions of uses of the technolo-
ay.

Created anew 118N chapter to capture Servlet 2.3 implications and others
(mostly empty for PD1).

Removed |mplementation Notes and Future appendices, asthey have not been
updated yet.

JavaServer Pages 2.0 Specification

E.15.35New Document

We created a new, non-normative document, “Using JSP Technology”. The
document is still being updated to JSP 1.2 and Servlet 2.3. We moved to this docu-
ment the following:

» Some of the non-normative Overview material.
« All of the appendix on tag library examples.
« Some of the material on the Tag Extensions chapter.

E.15.36 Additionsto API

* jsp:include can now indicate “flush="false'”.
* Made the XML view of a JSP page available for input, and for validation.

* PropertyEditor.setAsText() can now be used to convert from aliteral string at-
tribute value.

* New ValidatorClass and JspPage classes for validation against tag libraries.

* New IteratorTag interface to support iteration without BodyContent. Added
two new constants (EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN)
to help document better how the tag protocol works; they are carefully de-
signed so that old tag handlers will still work unchanged, but the old name for
the constant EVAL_BODY _TAG is how deprecated.

* Added listener classesto the TLD.

» Added elementsto the TLD to avoid having to write TagExtralnfo classesin
the most common cases.

» Added aresetCustomAdttributes() method to Tag interface.

» Added elementsto the TLD for delivering icons and descriptionsto usein au-
thoring tools.

JavaServer Pages 2.0 Specification

3-85

3-86

E.15.37Clarifications

* Incorporated errata 1.1 aand (in progress) 1.1 _h.

E.15.38Changes

» JSP 1.2 isbased on Servlet 2.3, in particular:
» JSP 1.2 is based on the Java 2 platform.

JSP.E.16Changes Between 1.0 and 1.1

The JSP 1.1 specification builds on the JSP 1.0 specification. The following
changes ocurred between the JSP 1.0 final specification and the JSP 1.1 final specifi-
cation.

E.16.39Additions

» Added a portable tag extension mechanism with an XML-based Tag Library
Descriptor, and arun-time stack of tag handlers. Tag handers are based on the
JavaBeans component model. Adjusted the semantics of the uri attribute in
taglib directives.

» Flushis now a mandatory attribute of jsp:include, and the only valid value is
“true”.

» Added parameters to jsp:include and jsp:forward.

 Enabled the compilation of JSP pagesinto Servlet classes that can be trans-
ported from one JSP container to another. Added appendix with an example
of this.

» Added a precompilation protocol.
» Added pushBody() and popBody() to PageContext.
* Added JspExcepti onandJspTagExcepti on classes.
» Consistent use of the JSP page, JSP container, and similar terms.
» Added a Glossary as Appendix JSPF.
» Expanded Chapter 1 so asto cover 0.92's "model 1" and "model 2".
» Clarified anumber of JSP 1.0 details.
JavaServer Pages 2.0 Specification

3-87

E.16.40Changes
e Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including
distributable JSP pages.

e j sp: pl ugi n nolonger can be implemented by just sending the contents of
j sp: fal | back totheclient.

* Reserved al request parameters starting with "jsp".

JavaServer Pages 2.0 Specification

3-88

JavaServer Pages 2.0 Specification

cenenor JOP.

Glossary

T his appendix isaglossary of the main concepts mentioned in this specifica-
tion. This appendix is non-normative.

action Anelement in a JSP page that can act on implicit objects and other
server-side objects or can define new scripting variables. Actions follow the
XML syntax for elements with astart tag, abody and an end tag; if the body is
empty it can also use the empty tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always
available to a JSP file without being imported.

action, custom An action described in a portable manner by atag library descrip-
tor and a collection of Java classes and imported into a JSP page by ataglib
directive.

Application Assembler A person that combines JSP pages, servlet classes,
HTML content, tag libraries, and other Web content into a deployable Web
application.

classic tag handler A tag handler that implementsthe javax.servlet.jsp.tagext.Tag
interface.

component contract The contract between a component and its container,
including life cycle management of the component and the APIs and proto-
colsthat the container must support.

Component Provider A vendor that provides a component either as Java classes
or as JSP page source.

JavaServer Pages 2.0 Specification

3-89

3-90

distributed container A JSP container that can run aWeb application that is
tagged as distributable and is spread across multiple Java virtual machines
that might be running on different hosts.

declaration A scripting element that declares methods, variables, or bothin a
JSP page. Syntactically it is delimited by the <%! and %> characters.

directive Anelement in a JSP page that gives an instruction to the JSP container
and isinterpreted at trandation time. Syntactically it is delimited by the <% @
and %> characters.

dynamic attribute An attribute, passed to a custom action, whose name is not
explicitly declared in the tag library descriptor.

element A portion of a JSP page that is recognized by the JSP trandator. An ele-
ment can be adirective, an action, or a scripting element.

EL expression Anelement in aJSP page representing an expression to be parsed
and evaluated via the JSP Expression Language. Syntactically it is delimited
by the ${ and } characters.

expression Either ascripting expression or an EL expression.

fixed template data Any portions of a JSP file that are not described in the JSP
specification, such as HTML tags, XML tags, and text. The template datais
returned to the client in the response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is
always available in a JSP file without being declared. The implicit objects are
request, response, pageContext, session, application, out, config, page, and
exception for scriptlets and scripting expressions. The implicit objects are
pageContext, pageScope, requestScope, sessionScope, applicationScope,
param, paramValues, header, headerValues, cookie and initParam for EL
expressions.

JavaServer Pages technology An extensible Web technology that uses template
data, custom elements, scripting languages, and server-side Java objects to
return dynamic content to aclient. Typically the template dataisHTML or
XML elements, and in many cases the client is a Web browser.

JSP container A system-level entity that provides life cycle management and
runtime support for JSP and servlet components.

JSP configuration The deployment-time process by which the JSP container is
declaratively configured using a deployment descriptor.

JavaServer Pages 2.0 Specification

391

JSP file A text file that contains JSP elements, forming a complete JSP page or
just apartial page that must be combined with other JSP files to form a com-
plete page. Most top-level JSP files have a.jsp extension, but other extensions
can be configured aswell.

JSP fragment A portion of JSP code, trandated into an implementation of the
javax.servlet.jsp.JspFragment abstract class.

JSP page One or more JSP files that form a syntactically complete description
for processing a request to create a response.

JSP page, frontA JSP page that receives an HTTP request directly from the cli-
ent. It creates, updates, and/or accesses some server-side data and then for-
wards the request to a presentation JSP page.

JSP page, presentation A JSP page that isintended for presentation purposes
only. It accesses and/or updates some server-side data and incorporates fixed
template data to create content that is sent to the client.

JSP page implementation class The Java programming language class, a serviet,
that isthe runtime representation of a JSP page and which receives the request
object and updates the response object. The page implementation class can
use the services provided by the JSP container, including both the servlet and
the JSP APIs.

JSP page implementation object The instance of the JSP page implementation
classthat receives the request object and updates the response object.

JSP segment A portion of JSP code defined in a separate file, and imported into
apage using the include directive.

named attribute A standard or custom action attribute whose value is defined
using the <jsp:attribute> standard action.

scripting element A declaration, scriptlet, or expression, whose tag syntax is
defined by the JSP specification, and whose content is written according to the
scripting language used in the JSP page. The JSP specification describes the
syntax and semantics for the case where the language page attribute is java.

scripting expression A scripting element that contains avalid scripting lan-
guage expression that is evaluated, converted to a String, and placed into the
implicit out object. Syntactically it is delimited by the <%= and %> characters.

scriptlet An scripting element containing any code fragment that isvalid in the
scripting language used in the JSP page. The JSP specifi cation describes what

JavaServer Pages 2.0 Specification

3-92

isavalid scriptlet for the case where the language page attribute isjava. Syn-
tactically a scriptlet is delimited by the <% and %> characters.

simple tag handler A tag handler that implements the javax.serv-
let.jsp.tagext.SimpleTag interface.

tag A pieceof text between aleft angle bracket and aright angle bracket that has
aname, can have attributes, and is part of an element in a JSP page. Tag
names are known to the JSP trand ator, either because the nameis part of the
JSP specification (in the case of a standard action), or because it has been
introduced using a Tag Library (in the case of custom action).

tag file A text-based document that uses fixed template data and JSP elementsto
define a custom action. The semantics of atag file arerealized at runtime by a
tag handler.

tag handler A Javaclassthat implements the JspTag interface and is the run-
time representation of a custom action.

tag library A collection of custom actions described by atag library descriptor
and Java classes.

tag library descriptor An XML document describing atag library.

Tag Library Provider A vendor that provides atag library. Typical examples
may be a JSP container vendor, a devel opment group within a corporation, a
component vendor, or a service vendor that wantsto provide easier use of
their services.

web application An application built for the Internet, an intranet, or an extranet.

web application, distributable A Web application that iswritten so that it can be
deployed in aWeb container distributed across multiple Javavirtual machines
running on the same host or different hosts. The deployment descriptor for
such an application uses the distributable €lement.

Web Application Deployer A person who deploys a Web application in a Web
container, specifying at least the root prefix for the Web application, and in a
J2EE environment, the security and resource mappings.

web component A servlet class or JSP page that runsin a JSP container and pro-
vides services in response to requests.

Web Container Provider A vendor that provides a servlet and JSP container that
support the corresponding component contracts.

JavaServer Pages 2.0 Specification

3-93

JavaServer Pages 2.0 Specification

3-94

JavaServer Pages 2.0 Specification

	Contents
	JSP.1 Core Syntax and Semantics 1-3
	JSP.2 Expression Language 1-63
	JSP.3 JSP Configuration 1-85
	JSP.4 Internationalization Issues 1-93
	JSP.5 Standard Actions 1-99
	JSP.6 JSP Documents 1-131
	JSP.7 Tag Extensions 1-149
	JSP.8 Tag Files 1-173
	JSP.9 Scripting 1-195
	JSP.10 XML View 1-201
	JSP.11 JSP Container 2-3
	JSP.12 Core API 2-17
	JSP.13 Tag Extension API 2-49
	JSP.14 Expression Language API 2-127
	JSP.A Packaging JSP Pages 3-3
	JSP.B JSP Elements of web.xml 3-7
	JSP.C Tag Library Descriptor Formats 3-15
	JSP.D Page Encoding Detection 3-57
	JSP.E Changes 3-61
	JSP.F Glossary 3-89

	Preface
	Status
	Overview
	The JavaServer Pages™ Technology
	Basic Concepts
	Users of JavaServer Pages

	Part I
	Core Syntax and Semantics
	JSP.1.1 What Is a JSP Page
	JSP.1.1.1 Web Containers and Web Components
	JSP.1.1.2 Generating HTML
	JSP.1.1.3 Generating XML
	JSP.1.1.4 Translation and Execution Phases
	JSP.1.1.5 Validating JSP pages
	JSP.1.1.6 Events in JSP Pages
	JSP.1.1.7 JSP Configuration Information
	JSP.1.1.8 Naming Conventions for JSP Files
	JSP.1.1.9 Compiling JSP Pages
	JSP.1.1.10 Debugging JSP Pages

	JSP.1.2 Web Applications
	JSP.1.2.1 Relative URL Specifications

	JSP.1.3 Syntactic Elements of a JSP Page
	JSP.1.3.1 Elements and Template Data
	JSP.1.3.2 Element Syntax
	JSP.1.3.3 Start and End Tags
	JSP.1.3.4 Empty Elements
	JSP.1.3.5 Attribute Values
	JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements
	JSP.1.3.7 Valid Names for Actions and Attributes
	JSP.1.3.8 White Space
	JSP.1.3.9 JSP Documents
	JSP.1.3.10 JSP Syntax Grammar

	JSP.1.4 Error Handling
	JSP.1.4.1 Translation Time Processing Errors
	JSP.1.4.2 Request Time Processing Errors
	JSP.1.4.3 Using JSPs as Error Pages

	JSP.1.5 Comments
	JSP.1.5.1 Generating Comments in Output to Client
	JSP.1.5.2 JSP Comments

	JSP.1.6 Quoting and Escape Conventions
	JSP.1.7 Overall Semantics of a JSP Page
	JSP.1.8 Objects
	JSP.1.8.1 Objects and Variables
	JSP.1.8.2 Objects and Scopes
	JSP.1.8.3 Implicit Objects
	JSP.1.8.4 The pageContext Object

	JSP.1.9 Template Text Semantics
	JSP.1.10 Directives
	JSP.1.10.1 The page Directive
	JSP.1.10.2 The taglib Directive
	JSP.1.10.3 The include Directive
	JSP.1.10.4 Implicit Includes
	JSP.1.10.5 Including Data in JSP Pages
	JSP.1.10.6 Additional Directives for Tag Files

	JSP.1.11 EL Elements
	JSP.1.12 Scripting Elements
	JSP.1.12.1 Declarations
	JSP.1.12.2 Scriptlets
	JSP.1.12.3 Expressions

	JSP.1.13 Actions
	JSP.1.14 Tag Attribute Interpretation Semantics
	JSP.1.14.1 Request Time Attribute Values
	JSP.1.14.2 Type Conversions

	Expression Language
	JSP.2.1 Overview
	JSP.2.2 The Expression Language in JSP 2.0
	JSP.2.2.1 Expressions and Attribute Values
	JSP.2.2.2 Expressions and Template Text
	JSP.2.2.3 Implicit Objects
	JSP.2.2.4 Deactivating EL Evaluation
	JSP.2.2.5 Disabling Scripting Elements

	JSP.2.3 General Syntax of the Expression Language
	JSP.2.3.1 Overview
	JSP.2.3.2 Literals
	JSP.2.3.3 Errors, Warnings, Default Values
	JSP.2.3.4 Operators "[]" and "."
	JSP.2.3.5 Arithmetic Operators
	JSP.2.3.6 Logical Operators
	JSP.2.3.7 Empty Operator - empty A
	JSP.2.3.8 Conditional Operator - A ? B : C
	JSP.2.3.9 Parentheses
	JSP.2.3.10 Operator Precedence

	JSP.2.4 Reserved Words
	JSP.2.5 Named Variables
	JSP.2.6 Functions
	JSP.2.6.1 Invocation Syntax
	JSP.2.6.2 Tag Library Descriptor Information
	JSP.2.6.3 Example
	JSP.2.6.4 Semantics

	JSP.2.7 Implicit Objects
	JSP.2.8 Type Conversion
	JSP.2.8.1 To Coerce a Value X to Type Y
	JSP.2.8.2 Coerce A to String
	JSP.2.8.3 Coerce A to Number type N
	JSP.2.8.4 Coerce A to Character
	JSP.2.8.5 Coerce A to Boolean
	JSP.2.8.6 Coerce A to Any Other Type T

	JSP.2.9 Collected Syntax

	JSP Configuration
	JSP.3.1 JSP Configuration Information in web.xml
	JSP.3.2 Taglib Map
	JSP.3.3 JSP Property Groups
	JSP.3.3.1 JSP Property Groups
	JSP.3.3.2 Deactivating EL Evaluation
	JSP.3.3.3 Disabling Scripting Elements
	JSP.3.3.4 Declaring Page Encodings
	JSP.3.3.5 Defining Implicit Includes
	JSP.3.3.6 Denoting XML Documents

	Internationalization Issues
	JSP.4.1 Page Character Encoding
	JSP.4.2 Response Character Encoding
	JSP.4.3 Request Character Encoding
	JSP.4.4 XML View Character Encoding
	JSP.4.5 Delivering Localized Content

	Standard Actions
	JSP.5.1 <jsp:useBean>
	JSP.5.2 <jsp:setProperty>
	JSP.5.3 <jsp:getProperty>
	JSP.5.4 <jsp:include>
	JSP.5.5 <jsp:forward>
	JSP.5.6 <jsp:param>
	JSP.5.7 <jsp:plugin>
	JSP.5.8 <jsp:params>
	JSP.5.9 <jsp:fallback>
	JSP.5.10 <jsp:attribute>
	JSP.5.11 <jsp:body>
	JSP.5.12 <jsp:invoke>
	JSP.5.12.1 Basic Usage
	JSP.5.12.2 Storing Fragment Output
	JSP.5.12.3 Providing a Fragment Access to Variables

	JSP.5.13 <jsp:doBody>
	JSP.5.14 <jsp:element>
	JSP.5.15 <jsp:text>
	JSP.5.16 <jsp:output>
	JSP.5.17 Other Standard Actions

	JSP Documents
	JSP.6.1 Overview of JSP Documents and of XML Views
	JSP.6.2 JSP Documents
	JSP.6.2.1 Identifying JSP Documents
	JSP.6.2.2 Overview of Syntax of JSP Documents
	JSP.6.2.3 Semantic Model
	JSP.6.2.4 JSP Document Validation

	JSP.6.3 Syntactic Elements in JSP Documents
	JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries
	JSP.6.3.2 The jsp:root Element
	JSP.6.3.3 The jsp:output Element
	JSP.6.3.4 The jsp:directive.page Element
	JSP.6.3.5 The jsp:directive.include Element
	JSP.6.3.6 Additional Directive Elements in Tag Files
	JSP.6.3.7 Scripting Elements
	JSP.6.3.8 Other Standard Actions
	JSP.6.3.9 Template Content
	JSP.6.3.10 Dynamic Template Content

	JSP.6.4 Examples of JSP Documents
	JSP.6.4.1 Example: A simple JSP document
	JSP.6.4.2 Example: Generating Namespace-aware documents
	JSP.6.4.3 Example: Generating non-XML documents
	JSP.6.4.4 Example: Using Custom Actions and Tag Files

	JSP.6.5 Possible Future Directions for JSP documents
	JSP.6.5.1 Generating XML Content Natively
	JSP.6.5.2 Schema and XInclude Support

	Tag Extensions
	JSP.7.1 Introduction
	JSP.7.1.1 Goals
	JSP.7.1.2 Overview
	JSP.7.1.3 Classic Tag Handlers
	JSP.7.1.4 Simple Examples of Classic Tag Handlers
	JSP.7.1.5 Simple Tag Handlers
	JSP.7.1.6 JSP Fragments
	JSP.7.1.7 Simple Examples of Simple Tag Handlers
	JSP.7.1.8 Attributes With Dynamic Names
	JSP.7.1.9 Event Listeners

	JSP.7.2 Tag Libraries
	JSP.7.2.1 Packaged Tag Libraries
	JSP.7.2.2 Location of Java Classes
	JSP.7.2.3 Tag Library directive

	JSP.7.3 The Tag Library Descriptor
	JSP.7.3.1 Identifying Tag Library Descriptors
	JSP.7.3.2 TLD resource path
	JSP.7.3.3 Taglib Map in web.xml
	JSP.7.3.4 Implicit Map Entries from TLDs
	JSP.7.3.5 Implicit Map Entries from the Container
	JSP.7.3.6 Determining the TLD Resource Path
	JSP.7.3.7 Translation-Time Class Loader
	JSP.7.3.8 Assembling a Web Application
	JSP.7.3.9 Well-Known URIs
	JSP.7.3.10 Tag and Tag Library Extension Elements

	JSP.7.4 Validation
	JSP.7.4.1 Translation-Time Mechanisms
	JSP.7.4.2 Request-Time Errors

	JSP.7.5 Conventions and Other Issues
	JSP.7.5.1 How to Define New Implicit Objects
	JSP.7.5.2 Access to Vendor-Specific information
	JSP.7.5.3 Customizing a Tag Library

	Tag Files
	JSP.8.1 Overview
	JSP.8.2 Syntax of Tag Files
	JSP.8.3 Semantics of Tag Files
	JSP.8.4 Packaging Tag Files
	JSP.8.4.1 Location of Tag Files
	JSP.8.4.2 Packaging in a JAR
	JSP.8.4.3 Packaging Directly in a Web Application
	JSP.8.4.4 Packaging as Precompiled Tag Handlers

	JSP.8.5 Tag File Directives
	JSP.8.5.1 The tag Directive
	JSP.8.5.2 The attribute Directive
	JSP.8.5.3 The variable Directive

	JSP.8.6 Tag Files in XML Syntax
	JSP.8.7 XML View of a Tag File
	JSP.8.8 Implicit Objects
	JSP.8.9 Variable Synchronization
	JSP.8.9.1 Synchronization Points
	JSP.8.9.2 Synchronization Examples

	Scripting
	JSP.9.1 Overall Structure
	JSP.9.1.1 Valid JSP Page
	JSP.9.1.2 Reserved Names
	JSP.9.1.3 Implementation Flexibility

	JSP.9.2 Declarations Section
	JSP.9.3 Initialization Section
	JSP.9.4 Main Section
	JSP.9.4.1 Template Data
	JSP.9.4.2 Scriptlets
	JSP.9.4.3 Expressions
	JSP.9.4.4 Actions

	XML View
	JSP.10.1 XML View of a JSP Document, JSP Page or Tag File
	JSP.10.1.1 JSP Documents and Tag Files in XML Syntax
	JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax
	JSP.10.1.3 JSP Comments
	JSP.10.1.4 The page Directive
	JSP.10.1.5 The taglib Directive
	JSP.10.1.6 The include Directive
	JSP.10.1.7 Declarations
	JSP.10.1.8 Scriptlets
	JSP.10.1.9 Expressions
	JSP.10.1.10 Standard and Custom Actions
	JSP.10.1.11 Request-Time Attribute Expressions
	JSP.10.1.12 Template Text and XML Elements
	JSP.10.1.13 The jsp:id Attribute
	JSP.10.1.14 The tag Directive
	JSP.10.1.15 The attribute Directive
	JSP.10.1.16 The variable Directive

	JSP.10.2 Validating an XML View of a JSP page
	JSP.10.3 Examples
	JSP.10.3.1 A JSP document
	JSP.10.3.2 A JSP page and its corresponding XML View
	JSP.10.3.3 Clearing Out Default Namespace on Include
	JSP.10.3.4 Taglib Direcive Adds to Global Namespace
	JSP.10.3.5 Collective Application of Inclusion Semantics

	Part II
	JSP Container
	JSP.11.1 JSP Page Model
	JSP.11.1.1 Protocol Seen by the Web Server

	JSP.11.2 JSP Page Implementation Class
	JSP.11.2.1 API Contracts
	JSP.11.2.2 Request and Response Parameters
	JSP.11.2.3 Omitting the extends Attribute
	JSP.11.2.4 Using the extends Attribute

	JSP.11.3 Buffering
	JSP.11.4 Precompilation
	JSP.11.4.1 Request Parameter Names
	JSP.11.4.2 Precompilation Protocol

	JSP.11.5 Debugging Requirements
	JSP.11.5.1 Line Number Mapping Guidelines

	Core API
	JSP.12.1 JSP Page Implementation Object Contract
	JSP.12.1.1 JspPage
	JSP.12.1.2 HttpJspPage
	JSP.12.1.3 JspFactory
	JSP.12.1.4 JspEngineInfo

	JSP.12.2 Implicit Objects
	JSP.12.2.1 JspContext
	JSP.12.2.2 PageContext
	JSP.12.2.3 JspWriter
	JSP.12.2.4 ErrorData

	JSP.12.3 An Implementation Example
	JSP.12.4 Exceptions
	JSP.12.4.1 JspException
	JSP.12.4.2 JspTagException
	JSP.12.4.3 SkipPageException

	Tag Extension API
	JSP.13.1 Classic Tag Handlers
	JSP.13.1.1 JspTag
	JSP.13.1.2 Tag
	JSP.13.1.3 IterationTag
	JSP.13.1.4 TryCatchFinally
	JSP.13.1.5 TagSupport

	JSP.13.2 Tag Handlers that want Access to their Body Content
	JSP.13.2.1 BodyContent
	JSP.13.2.2 BodyTag
	JSP.13.2.3 BodyTagSupport

	JSP.13.3 Dynamic Attributes
	JSP.13.3.1 DynamicAttributes

	JSP.13.4 Annotated Tag Handler Management Example
	JSP.13.5 Cooperating Actions
	JSP.13.6 Simple Tag Handlers
	JSP.13.6.1 SimpleTag
	JSP.13.6.2 SimpleTagSupport
	JSP.13.6.3 TagAdapter

	JSP.13.7 JSP Fragments
	JSP.13.7.1 JspFragment

	JSP.13.8 Example Simple Tag Handler Scenario
	JSP.13.9 Translation-time Classes
	JSP.13.9.1 TagLibraryInfo
	JSP.13.9.2 TagInfo
	JSP.13.9.3 TagFileInfo
	JSP.13.9.4 TagAttributeInfo
	JSP.13.9.5 PageData
	JSP.13.9.6 TagLibraryValidator
	JSP.13.9.7 ValidationMessage
	JSP.13.9.8 TagExtraInfo
	JSP.13.9.9 TagData
	JSP.13.9.10 VariableInfo
	JSP.13.9.11 TagVariableInfo
	JSP.13.9.12 FunctionInfo

	Expression Language API
	JSP.14.1 Expression Evaluator
	JSP.14.1.1 ExpressionEvaluator
	JSP.14.1.2 Expression
	JSP.14.1.3 VariableResolver
	JSP.14.1.4 FunctionMapper

	JSP.14.2 Exceptions
	JSP.14.2.1 ELException
	JSP.14.2.2 ELParseException

	JSP.14.3 Code Fragment

	Part III
	Packaging JSP Pages
	JSP.A.1 A Very Simple JSP Page
	JSP.A.2 The JSP Page Packaged as Source in a WAR File
	JSP.A.3 The Servlet for the Compiled JSP Page
	JSP.A.4 The Web Application Descriptor
	JSP.A.5 The WAR for the Compiled JSP Page

	JSP Elements of web.xml
	JSP.B.1 XML Schema for JSP 2.0 Deployment Descriptor

	Tag Library Descriptor Formats
	JSP.C.1 XML Schema for TLD, JSP 2.0
	JSP.C.2 DTD for TLD, JSP 1.2
	JSP.C.3 DTD for TLD, JSP 1.1

	Page Encoding Detection
	JSP.D.1 Detection Algorithm

	Changes
	JSP.E.1 Changes between JSP 2.0 PFD3 and JSP 2.0 Final
	JSP.E.2 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3
	JSP.E.3 Changes between JSP 2.0 PFD and JSP 2.0 PFD2
	JSP.E.4 Changes between JSP 2.0 PFD1a and JSP 2.0 PFD
	JSP.E.5 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a
	JSP.E.6 Changes between JSP 2.0 PD1 and JSP 2.0 PD2
	JSP.E.7 Changes between JSP 2.0 CD2 and JSP 2.0 PD1
	JSP.E.8 Changes between JSP 2.0 CD1 and JSP 2.0 CD2
	E.8.1 Between CD2c and CD2
	E.8.2 Between CD2b and CD2c
	E.8.3 Between CD2a and CD2b
	E.8.4 Changes between CD1 and CD2a

	JSP.E.9 Changes between JSP 2.0 ED1 and JSP 2.0 CD1
	E.9.5 JSP Fragments, .tag Files, and Simple Tag Handlers
	E.9.6 Expression Language Added
	E.9.7 EBNF Fixes
	E.9.8 I18N Clarifications
	E.9.9 Other Changes

	JSP.E.10 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1
	E.10.10 Typographical Fixes and Version Numbers
	E.10.11 Added EBNF Grammar for JSP Standard Syntax
	E.10.12 Added Users of JavaServer Pages Section
	E.10.13 Added Placeholders for Expression Language and Custom Actions Using JSP
	E.10.14 Added Requirement for Debugging Support

	JSP.E.11 Changes Between PFD 2 and Final Draft
	E.11.15 Added jsp:id mechanism
	E.11.16 Other Small Changes
	E.11.17 Clarification of role of id
	E.11.18 Clarifications on Multiple Requests and Threading
	E.11.19 Clarifications on JSP Documents
	E.11.20 Clarifications on Well Known Tag Libraries
	E.11.21 Clarified Impact of Blocks
	E.11.22 Other Small Clarifications

	JSP.E.12 Changes Between 1.2 PFD 1b and PFD 2
	E.12.23 Added elements to Tag Library Descriptor
	E.12.24 Changed the way version information is encoded into TLD
	E.12.25 Assigning String literals to Object attributes
	E.12.26 Clarification on valid names for prefix, action and attributes
	E.12.27 Clarification of details of empty actions
	E.12.28 Corrections related to XML syntax
	E.12.29 Other changes

	JSP.E.13 Changes Between 1.2 PFD and 1.2 PFD 1b
	JSP.E.14 Changes Between 1.2 PD1 and 1.2 PFD
	E.14.30 Deletions
	E.14.31 Additions
	E.14.32 Clarifications
	E.14.33 Changes

	JSP.E.15 Changes Between 1.1 and 1.2 PD1
	E.15.34 Organizational Changes
	E.15.35 New Document
	E.15.36 Additions to API
	E.15.37 Clarifications
	E.15.38 Changes

	JSP.E.16 Changes Between 1.0 and 1.1
	E.16.39 Additions
	E.16.40 Changes

	Glossary

