

Page 1 29 November 2012

C++ AMP Errata

The following is a list of the errata for the book. If you find other errors with the book text then please

report them on the O'Reilly Errata page. For issues related to the code samples please file an issue on

Codeplex.

Chapter 1: Vectorization (page 8)
The code fragment should read as follows. Note the use of the & operator rather than &&.

int CPUInfo[4] = { -1 };

 __cpuid(CPUInfo, 1);

 bool bSSEInstructions = (CpuInfo[3] >> 24 & 0x1);

Chapter 1: OpenMP (page 10)
There is a small technical mistake here. The text should state that the loop is not parallelizable in its

current form. This loop is parallelizable but must be rewritten to remove the loop carried dependency.

The developer is responsible for writing a loop that is parallelizable, of course, and this is the truly hard part of

the job. For example, this loop is not parallelizable in its current form:

for (int i = 1; i <= n; ++i)

 a[i] = a[i - 1] + b[i];

Chapter 2: The CPU NBody Classes (page 36)
The code fragment should read as follows. Note the use of the += operator add the current particle's

acceleration to acc, rather than using the = operator to set the value.

 std::for_each(pParticlesIn, pParticlesIn + numParticles, [=, &acc](const ParticleCpu& p)

 {

 const float_3 r = p.pos - pos;

 float distSqr = SqrLength(r) + m_softeningSquared;

 float invDist = 1.0f / sqrt(distSqr);

 float invDistCube = invDist * invDist * invDist;

 float s = m_particleMass * invDistCube;

 acc += r * s;

 });

Chapter 4: Tile Barriers and Synchronization (page 74)
The references to variable TS should refer to TileSize. The code fragment should read as follows.

 for (int i = 0; i < W; i += TileSize)

 {

 tile_static float sA[TileSize][TileSize];

 tile_static float sB[TileSize][TileSize];

 sA[row][col] = a(tidx.global[0], col + i);

 sB[row][col] = b(row + i, tidx.global[1]);

 for (int k = 0; k < TileSize; k++)

 sum += sA[row][k] * sB[k][col];

 }

http://oreilly.com/catalog/errata.csp?isbn=0790145341907
http://ampbook.codeplex.com/workitem/list/basic

Page 2 29 November 2012

Chapter 7: Efficient Accelerator Global Memory Access (pages 148-9)
This section does not contain any technical mistakes but feedback from readers suggested that it was

not entirely clear. It's been reworded and the second diagram updated to convey the correct meaning.

This difference in execution time is due to the writes to outData being uncoalesced. Although the reads from

inData on each thread are from adjacent memory addresses, the writes to outData from consecutive threads oc-

cur on different rows.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

inData outData

This explains the big difference in performance. The threads (numbered in the diagram above) are writing to

memory locations that are not adjacent. Remember that C++ AMP, like C and C++, stores multi-dimensional data

in row-major order, so the shaded row represents coalesced memory access while the column in outData is an

uncoalesced access.

It's actually possible to use tile static memory to mitigate this by adding an additional set of copies, as shown

in the following example:

... Code sample is unchanged. See the original text.

Here the kernel is divided into two phases using the familiar tiled kernel pattern introduced in Chapter 4. In the

first part of the kernel each thread in the tile copies coalesced data from inData in global memory into tile static

localData and transposes it during the copy to tile static memory. After the barrier—which ensures that all threads

have finished the copy—the data is written in a coalesced way back to global memory. Tile static memory has a

much higher bandwidth and smaller interface width than global memory, so the penalty for uncoalesced memory

accesses is far less. By transferring the matrix elements by means of tile static memory and doing the transpose

there, uncoalesced writes to global memory can be eliminated. The diagram shows four tiles (numbered in bold),

each with four threads. The memory accesses for the threads in tile 2 are shown shaded. It clearly shows that the

writes to outData by threads 1 and two in tile 2 are now coalesced.

 1 2 1 2

 3 4 3 4

 1 2

 3 4

 1 2 1 2

 3 4 3 4

 1 2 1 2

 3 4 3 4

 1 2

 3 4

 1 3

 2 4

inData outDatalocalData

 1 2

 3 4

1 2 1

2

2

2

3

3

44

