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Chapter 1. First Order Equations

Problem Set 1.1, page 3

1

Draw the graph ofy = ¢’ by hand, for—1 < ¢ < 1. What is its slopely/dt at
t = 0? Add the straight line graph gf= et. Where do those two graphs cross ?

Solution The derivative ok’ has slopel att = 0. The graphs meet at= 1 where
their value ise. They don’t actually “cross” because the line is tangenh®durve :
both have slopg’ = c att = 1.

Draw the graph of;; = 2! on top ofy, = 2e’. Which function is larger at = 0?
Which functionis largerat = 17?

Solution From the graphs we see thattat 0, the function2e? is larger whereas at
t = 1,e% is larger. ¢ timese is larger thar2 timese).

What is the slope of = e~ at ¢t = 0? Find the slopdy/dt att = 1.
Solution The slope o=t is —e~t. Att = 0 thisis—1. The slope at = 1 is —e 1.
What “logarithm” do we use for the numbe(the exponent) wheed = 4 ?

Solution We use the natural logarithm to firdrom the equatior! = 4. We get that
t=1In4 ~ 1.386.

State the chain rule for the derivatide/dt if y(¢t) = f(u(t)) (chain of f andw).
Solution The chain rule gives:

dy _ df(u(t)) du(?)
dt ~ du(t) dt

The secondderivative ofe’ is againe’!. Soy = e solvesd?y/dt?> = y. A sec-
ond order differential equation should have another smiytilifferent fromy = Cet.
What is that second solution ?

Solution The second solution ig= ¢~*. The second derivative is(—e~t) = e *.

Show that the nonlinear examplg)/dt = y? is solved byy = C/(1 — Ct)
for every constant’. The choice” = 1 gavey = 1/(1 — t), starting fromy(0) = 1.

Solution Given thaty = C/(1 — Ct), we have:
y? =C?/(1-Ct)?
v — . (=1)- (=0)1/(1 = Ct)2 = C?/(1 — Ct)?

dt
Why will the solution tody/dt = 3> grow faster than the solution tdy/dt
(if we start them both fromy = 1 att = 0)? The first solution blows up dt
The second solutioef grows exponentially fast but it never blows up.

Solution The solution of the equatiafy /dt = y? for y(0) = lisy = 1/(1—t), while
the solution tady /dt = y for y(0) = 1isy = ¢'. Notice that the first solution blows
up att = 1 while the second solutio#f grows exponentially fast but never blows up.

Y
1.



1.3. The Exponentials’ ande®t 3

9 Find a solution tady/dt = —y? starting fromy(0) = 1. Integratedy/y* and —dt.
(Or work with z = 1/y. Thendz/dt = (dz/dy) (dy/dt) = (—1/y*)(—y?) = 1.
Fromdz/dt = 1 you will know z(t) andy = 1/z.)

Solution The first metcrlmd has
Y

Yy t
du . . .
— =— [ dv (u,v areintegration variablgs
u
y(0) 0
L S
y  y(0)
-1
— =—t-1
Y
1
A —

The approach using = 1/y leads tadz/dt = 1 andz(0) = 1/1.
Thenz(t) =1+tandy =1/z = 13-
10 Which of these differential equations are linear)r?

@y'+ sing=t )y =*@y—1t) (©y' +e'y=1t"
Solution (a) Since this equation solvesia y term, it is not linear iny.

(b) and (c) Since these equations have no nonlinear termdhiey are linear.

11 The product rule gives what derivative fete=* ? This function is constant. At= 0
this constant id. Thenete™t = 1 for all ¢.

Solution (efe )’ =efe ™t —ele™t =0 so ee™* isaconstant(1).

12 dy/dt = y + 1 is not solved byy = e! + t. Substitute thay to show it fails. We can't
just add the solutions tg9’ = y andy’ = 1. What number. makesy = e’ + cinto a
correct solution ?

Solution
t
%:y-l-l W:et—kc—kl

Wrong @ £el+t+1 Correctc= —1
Problem Set 1.3, page 15

1 Sett = 2 in the infinite series for?. The sum must be timese, close t07.39.
How many terms in the series to reach a surii @ How many terms to pags3 ?

22 23 2t
Solution The series for? hast =2:e2 =1+2+ o7 + 37 + 0 + -
. . 8 16
If we include five terms we get? ~ 1+ 2 +2 + 5 + 1= 7.0

of 22 93 9¢ 95 26
If we include seven terms we T~ 14+2+—+—+—+—+— = 7.35556.
9 + +2!+3!+4!+120+720
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2 Starting fromy(0) = 1, find the solution taly/dt = y at time¢ = 1. Starting from
that y(1), solvedy/dt = —y to time¢ = 2. Draw a rough graph of(¢t) from
t = 0tot = 2. What does this say aboert! timese ?

Solution y = e* up tot = 1, so thaty(l) = e. Then fort > 1 the equation
dy/dt = —yhasy = Ce~'. Att = 1, this becomegs = Ce~! so thatC = e2.
The solution ofdy/dt = —y up tot = 2isy = e2~t. Att = 2 we have returned to
y(2) = y(0) = 1. Then(e~1)(e) = 1.

Start withy(0) = $5000. If this grows bydy /dt = .02y until ¢ = 5 and then jumps to
a = .04 per year untit = 10, what is the account balancetat 10 ?

Solutio

d .
t§5:d—i=.02y 5§t§10:d—§:.04y gives y = Ce 0%
y = 5000e:02 y(5) = Ce=2 = 5000e! gives C = 5000e~-!
y(5) = 5000e* y(t) = 5000 (e 04t=0-1)

y(10) = 5000e3
Change Problem 3 to start wif5000 growing atdy/dt = .04y for the first five years.
Then drop tax = .02 per year until yeat = 10. What is the account balancetat 10?

Solution

d d
d—'z = .04y d—‘g = .02y for 5<t<10
Yy — 016.0426 y — 026.0215

y(0) = C1 = 5000 y(5) = Che! = 5000e2
y(t) = 5000e4 fort <5 Cy = 5000et

y(5) = 5000e2 y(t) = 5000(e2t+0-1)

y(10) = 5000e-®> = same as in 1.3.3

Problems 5-8 are abouty = et and its infinite series.

Replace by at in the exponential feries to find?® :
eat:1+at—|——(at)2+-~-+—'(at)"+-~-

Take the derivative of every term (keep five 7t1e'rms). Factar @uo show that

the derivative o£% equalsae®. At what timeT doese® reach2 ?

Solution The derivative of this series is obtained by differentigtihe terms individ-
ually:

~ —qg+4at+---+ amthl 4L

dt (n—1)!
1 2
=a 1—|—at+§(at) +-~-—|—( S
T In2 " '
If et =2 then aT =In2andT = —.
a

anfltnfl + .. ) — aeat

Start fromy’ = ay. Take the derivative of that equation. Take th& derivative.
Construct the Taylor series that matches all these deragattt = 0, starting from
1+ at + $(at)?. Confirm that this series fay(t) is exactly the exponential series for

e,

Solution The derivative ofy’ = ayis y” = ay’ = a%y. The next derivative is
y""" = ay” which isa3y. Wheny(0) = 1, the derivatives at = 0 area, a?,a?, ... so

L 1
the Taylor series ig(t) = 1 + at + §a2t2 +.o=e
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7 At what timest do these events happen ?
(a) et — o (b) et — 2 (C) ea(t+2) — cato2a
Solution
@e*=e att=1/a.
(b)e* =€ att =2/a.
() ex(t+2) = gate2a gt all ¢,
8 If you multiply the series foe®® in Problem5 by itself you should get the series for
e2et, Multiply the first 3 terms by the sam& terms to see the first terms ine2*t.

. 1 1 11
Solution (1 + at + §a2t2)(1 +at + 5a%?) =1+ 2at+ (1 +to 5) a’t> + .-

This agrees witk?** = 1 4 2at + %(Qat)Q 4o
9 (recommended) Fing(t) if dy/dt = ay andy(T) = 1 (instead ofy(0) = 1).

Solution % = ay gives y(t) = Ce®. When Ce®™ = 1 att = T, this gives
C =ec T and y(t) = e*t=T),

10 (a) If dy/dt = (In2)y, explain whyy(1) = 2y(0).
(b) If dy/dt = —(In2)y, how isy(1) related toy(0) ?

Solution

@) % = (In2)y — y(t) = y(0)e'™2) — y(1) = y(0)e™? = 2y(0).

®) Y = —(n2)y - y(t) = y(0)e™ D 5 y(1) = y(0)e ™2 = Ly/(0).

11 In a one-year investment af(0) = $100, suppose the interest rate jumps from
6% to 10% after six months. Does the equivalent rate for a whole yeankg{%,
or more thar8%, or less thar% ?

Solution We solve the equation in two steps, first fram= 0 to t = 6 months, and
then fromt = 6 months tot = 12 months.

y(t) =y(0)e y(t) = y(0.5)e
y(0.5) = $100e0-06%0:5 — 10003 y(1) = $103.05¢0-1%0-5 = §103.05¢:05
— $103.05 — $108.33

If the money was invested for one year at 8% the amountai would be:
y(1) = $100e-98*1 = $108.33.
The equivalent rate for the whole year is indeed exactly 8%.

12 If you invest y(0) = $100 at 4% interest compounded continuously, then
dy/dt = .04y. Why do you have more th&i 04 at the end of the year ?

Solution The quantitative reason for why this is happening is obthinem solving

the equation: i
d_:g = 0.04y — y(t) = y(0)e%
y(1) = 100e%%* ~ $104.08.

The intuitive reason is thahe interest accumulates interest
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Chapter 1. First Order Equations

What linear differential equatiodty /dt = a(t)y is satisfied byy(t) = ¢St 2
Solution The chain rule forf (u(t)) hasy(t) = f(u) = e* andu(t) = sint:
dy df(u(t)) df du
dat—dt  dtdt

If the interest rate i = 0.1 per year iny’ = ay, how many years does it take for
your investment to be multiplied hy? How many years to be multiplied lay ?

Solution Ifthe interestrateia = 0.1, theny(t) = y(0)e® 1. Fort = 10, the value is
y(t) = y(0) e. Fort = 20, the value igy(t) = y(0) €.

Write the first four terms in the series fgr= et”. Check thatly /dt = 2ty.

Solution

=e"cost =ycost. Thena(t) = cos(t).

1 1
y:et2:1—|—t2—|—§t4—|—6t6+-~-

d 5 1
d—i =2+ 288 417+ =2t (1+t2+§t4+---> = 2te’”.
Find the derivative ot (¢) = (1 + £)". If n is large, thisdY/dt is close toy’!

Solution The derivative of"(t) = (1 + £)" with respect ta isn(1) (1 4+ £)" ' =
(1+ %)"71. For largen the extra factoll + L is nearlyl, anddY’/dt is nearY .

(Key to future sections). Suppose the exponent ia e¢*(*) is u(t) = integral ofa(t).
What equationdy /dt = y does this solve ? If,(0) = 0 what is the starting
valuey(0) ?

Solution Differentiatingy = e/ “(*) % with respect ta by the chain rule yieldg' =
a(t)e «®dt_ Thereforedy /dt = a(t)y. If u(0) = 0 we havey(0) = ¢*(0) =1,

The Taylor series comes froaf/* f(x), when you write oue® % = 1 + d/dx +
$(d/dz)? + --- as a sum of higher and higher derivatives. Applying the sedg¢ ()

atz = 0 would give the valugf + /' + 3 f” +--- atz = 0.
The Taylor series says: This is equalftar) atz =

i 1 .
Solution F@) =f0)+17'(0)+ 512]“’(0) +--- Thisis exactly
d 1/d\°
f(l) = (1-‘1-%4-5 (£> +"'>f($€)at$€—0.
(Computer or calculator, 2.xx is close enough) Find the timehen ¢! = 10.
The initial y(0) has increased by an order of magnitude—a factori@f The
exact statement of the answer is- . At what timet doese! reach100 ?

Solution The exact time when’ = 10ist = In 10. Thisist ~ 2.30 or 2.3026.
Then the time wheaT = 100is T = In 100 = In 102 = 21n 10 ~ 4.605.

Note that the time whee! = L is ¢ = —In10 and nott = L.

The most important curve in probability is the bell-shapedphy of e=t/2,
With a calculator or computer find this function at= —2,—1,0,1,2. Sketch

the graph ob~t"/2 fromt = —co to t = co. It never goes below zero
Solution Att=1andt = —1, we havee /2 = ¢~1/2 = 1/,/e ~ .606

Att =2andt = —2, we havee*"/2 = =2 ~ .13.
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Explain why y; = e(@tt+9)t js the same ag, = e*e’ect. They both start at
y(0) = 1. They both solve what differential equation ?

Solution The exponentrule is used twice to fial@+t+e)t = gattbitet — gatt+btoct —

eat ebifecif .

This function must solvéfﬁ = (a 4+ b + ¢)y. The product rule confirms this.
Fory’ = y with a = 1, Euler’s first step chooseg, = (1 + At)Yy. Backward

Euler choosed; = Yy/(1 — At). Explain why1 4 At is smaller than the exaet*
and1/(1 — At) is larger thare®*. (Compare the series fay/ (1 — x) with e*.)

Solution 1+ At is certainly smaller thap®t = 1 + At + 2 (At)? + L (At)? + - -

—o = 1+ At+(At)*+ (At)® +- - - is larger thare®!, because the coefficients drop

below1 in et.

Problem Set 1.4, page 27

1

All solutions tody/dt = —y + 2 approach the steady state whéig/ dt is zero and
Y =Yoo = ___. Thatconstany = y., is a particular solutiory,,.

Which y,, = Ce™* combines with this steady statg to start fromy(0) = 4?
This question chosg, + y,, to bey..+ transient(decaying to zero).
Solution y., = 2 = y, at the steady state Whe% = 0. Theny, = 2¢~¢ gives
Y=UYn+yp=2+2et=4att=0.
For the same equatialy/dt = —y + 2, choose the null solutiop,, that starts from
y(0) = 4. Find the particular solutiog, that starts fromy(0) = 0.
This splitting chooseg,, andy,, ase®y(0) + integral ofe**~")q in equation (4).
Solution For the same equation as 11.4y1,= 4e¢~! has the correcg(0) = 4. Now
yp Must be2 — 2e~* to start aty, (0) = 0. Of coursey,, + y,, is still 2 4+ 2e~*.
The equationly /dt = —2y+ 8 also has two natural splittinass + yr = yn + yp:
1. Steady §/s = yoo) + Transientyr — 0). What are those partsgf0) = 6 ?
2. (yn = —2yn fromyn(0) = 6) + (y;, = —2yp + 8 starting fromyp(0) = 0).
Solution 1. ys = 4 (when% = 0: steady state) anglr = 2%,

2. yny = 6e 2" andyp = 4 — 4e~?! starts ayyp(0) = 0.
Againys + yT = yn + yp: two splittings ofy.

All null solutions tou — 2v = 0 have the form(u, v) = (e, ).

One particular solution te — 2v = 3 has the form(u, v) = (7, ).
Every solution tax — 2v = 3 hastheform(7, __ ) +¢(1, ).

But also every solution hasthefor®, )+ C(1,  )forC =c+4.

Solution All null solutions tou — 2v = 0 have the form(u, v) = (¢, %c).
One particular solution te — 2v = 3 has the form(u,v) = (7, 2).

Every solution tax — 2v = 3 has the form(7, 2) 4+ ¢(1, % .

But also every solution has the for(8,0) + C (1, %). HereC = c + 4.
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5 The equationdy/dt = 5 with y(0) = 2 is solved byy = . A natural split-
ting y,,(t) = __ andy,(t) = __ comes fromy,, = ¢*'y(0) andy, = [ e**=T)54T.

This small example has = 0 (soay is absent) and = 0 (the source ig = 5¢°).
Whena = ¢ we have “resonance.” A factomwill appear in the solution.

Solution dy/dt = 5 with y(0) = 2is solved byy = 2+ 5¢. A natural splittingy,, (t) =
2 andy,(t) = 5t comes fromy,,(0) = y(0) andy, = [ e*!=*)5ds = 5t (sincea = 0).
Starting with Problem 6, choose the very particulary,, that starts from y,(0) = 0.
6 For these equations starting0) = 1, find y,,(¢t) andy,(t) andy(t) = yn + yp.
@y -9 =90 (b) v+ 9y =290
Solution (a) Since the forcing function is we use equation 6:
yn(t) — egt
yp(t) = L (e —1) = 10(e” — 1)
y(t) = yn(t) +yp(t) = ¥ +10(e” — 1) = 11 — 10.
(b) We again use equg\ttion 6, noting that —9. The steady state will bg,, = 10.
yn(t) =€~
yp(t) = Zg(e™ = 1)
y(t) = yn(t) +yp(t) = e % = 10(e™% — 1) = 10 — 9.

7 Find a linear differential equation that produggst) = e* andy, (t) = 5(% — 1).
Solution y, = €% needsa = 2. Theny, = 5(e¥ — 1) starts fromy,(0) = 0,
telling us thaty(0) = y,,(0) = 1. Thisy, is a response to the forcing terfe’’ + 1).
So the equation foy = e + 5¢5 — 5 must be% = 2y + (% + 1). Substitutey :

2e% + 40e¥ = 22" +10e3 — 10 + (¥ +1).
Comparing the two sideg; = 30 andD = 10. Harder than expected.

8 Find a resonant equatign = c) that produceg,, (t) = e* andy,(t) = 3te?".
Solution Clearlya = ¢ = 2. The equation must béy/dt = 2y + Be?t. Substituting
y = et + 3te? gives2e?! + 3e?t + 6te?t = 2(e?! + 3te?!) + Be? and thenB = 3.

9 y' = 3y + 3! hasy,, = €3'y(0). Find the resonany, with y,,(0) = 0.

Solution The resonany, has the fornCte®® starting fromy, (0) = 0. Substitute in
the equation:
dy

i 3y + €3t is Cedt + 3Cte3 = 3Cte3 + €3t andthenC = 1.

Problems 10-13 are abouyy’ — ay = constant sourceg.

10 Solve these linear equations in the foyr= v, + v, with y,, = y(0)e®".

@y —4y=-8 (b)y +4y=28 Which one has a steady state ?

Solution (a) y' —4y = —8 hasa = 4 and y, = 2. But2 is not a steady state at
t = oo because the solutiap, = y(0)e*! is exploding.

(b) vy’ +4y = 8 hasa = —4 and againy, = 2. This2 is a steady state because
a < 0andy,, — 0.
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Find a formula fory(t) with y(0) = 1 and draw its graph. What ig., ?

@y +2y=6 (b)) y +2y=-6

Solution (a) ¢’ +2y =6 hasa = -2 and y,, =3 and y = y(0)e~2 + 3.

(b) ¥ +2y=—6 hasa = -2 and yo, = —3 and y = y(0)e~2* — 3.

Write the equations in Problem 118 = —2Y with Y = y — yo. What isY'(0) ?
Solution With Y = y — y» andY (0) = y(0) — y-, the equations in 1.4.11 are
Y’ = —2Y. (The solutions ar&’(t) = Y (0)e~2" which isy(t) — yo = (y(0) —
Yoo)e 2 or y(t) = y(0)e ™ + yoo(1 — e~ ).

If a drip feedsg = 0.3 grams per minute into your arm, and your body eliminates the

drug at the ratéy grams per minute, what is the steady state concentrgtioh Then
in = outandy., is constant. Write a differential equation for=y — y...

Solution The steady state hag, = yout Or 0.3 = 6y OF Yo = 0.05. The equa-
tionforY = y —ys is Y/ = aY = —6Y. The solution isY (t) = Y (0)e~° or
Y(t) = Yoo + (¥(0) — yoo)e ™.

Problems 14-18 are abouy’ — ay = step function H(t — T') :

Why isy.., the same foy’ + y = H(t —2)andy’ + y = H(t — 10)?

Solution Noticea = —1. The steady states are the same because the step functions
H(t — 2)andH (t — 10) are the same after time= 10.

Draw the ramp function that solvgg = H (t — T') with y(0) = 2.

Solution The solution is a ramp withy(t) = y(0) = 2 up to timeT and then
y(t) =2+t — T beyond timeT".

Find y,,(t) andy,(t) as in equation (10), with step function inputs startin@'at 4.
@y —by=3H(t—-4) M)y +y=7H({t—-4) (Whatisys?)

Solution (a) y,(t) = 2(e5¢—% — 1) for ¢ > 4 with no steady state.
p 5

(b) yp(t) = S (e~ —1) for t >4 witha=—1 and y, = 7.

Suppose the step function turns onZat= 4 and off atT = 6. Theng(t) =

H(t —4) — H(t — 6). Starting fromy(0) = 0, solvey’ + 2y = ¢(t). What is

Yoo ?

Solution The solution has 3 parts. Firgtt) = y(0) = 0 uptot = 4. ThenH (t — 4)

turns on andy(t) = -5 (e"2*=% — 1). This reacheg(6) = —3(e~* — 1) at time

t = 6. Aftert = 6, the source is turned off and the solution decays to zgft: =

y(6)€72(t76)_

Method 2: We use the same steps as in equations (8) - (10pgtbiaty (0) = 0.
(e?'y) = e H(t —4) — e H(t — 6)

t t

e?y(t) — e*y(0) = /ezmd:v - /e%dac

'S
—
9]
[\
~
|
('bwa
&
S~—

l (t —4) + 15~ VH(t - 6)
y(t) = —3(e¥ 2 = 1)H(t — 4) + (72 = 1)H(t — 6)
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Fort — oo, we have:
1

Yoo = (570~ DH(E— 4) 4 S( 7~ DH( ~6) =0,

Suppose/ = H(t — 1)+ H(t — 2) + H(t — 3), starting aty(0) = 0. Findy(¢).

Solution We integrate both sides of the equation.
t t

/y’(t)dt = /(H(t — 1)+ H(t—2)+ H(t —3))dt
0 0
y(t) —y(0) =R(t—1)+ R(t—2)+ R(t - 3)
y(t) =Rt —1)+ R(t—2)+ R(t —3)
R(t) is the unit ramp functior= max (0, t).

Problems 19-25 are about delta functions and solutions t¢’ — ay = qd(t — T).

For all¢ > 0 find these integrals(t), b(t), c(t) of point sources and graptit) :
t t t
(a)/&(T—2)dT (b)/(&(T—Q) —46(T —3))dT (c)/&(T—2)§(T—3)dT
0 0 0
Solution Fort < 2, the spike inj(¢ — 2) does not appear in the integral franto ¢ :
t
0 ift<2
(@) /6(T—2)dT:{ L 'S
0

The integral (b) equals for 2 < ¢t < 3. This s the differencéf (t — 2) — H(t — 3).
The integral (c) izerobecausé (T — 2)6(T — 3) is everywhere zero.

Why are these answers reasonable ? (They are all correct.)
(a) / e's(t)dt =1 (b) / (6(t))%dt = oo (c)/ el'o(t — T)dT = €

Solution (a) The difference’s(t)—4(¢) is everywhere zero (notice it is zerotat 0).
Soeld(t) andd(t) have the same integral (fromoo to oo that integral isl). This
reasoning can be made more precise.

(b) This is the difference between the step functidh@ — 2) and H(t — 3). So it
equalsl for 2 < ¢ < 3 and otherwise zero.

(c) As in part (a), the difference betweefé(t — T') ande!s(t — T') is zero att = T
(and also zero at every othgr So

/ el's(t —T)dT = ¢ /Oo §(t —T)dT = €.

The solution tay’ - 2y + 6(t — 3) jumps_up byl at¢ = 3. Before and aftet = 3,
the delta function is zero ang grows like ¢?. Draw the graph ofy(t) when
(@) y(0) =0and (b) y(0) = 1. Write formulas fory(t) before and aftet = 3.
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Solution (a) y(0) = 0 givesy(t) = 0 until ¢ = 3. Theny(3) = 1 from the jump.

After the jump we are solving’ = 2y andy grows exponentially frony(3) = 1. So

y(t) = 29,

(b) y(0) = 1 givesy(t) = €2 until t = 3. The jump produceg(3) = ¢® + 1. Then

exponential growth giveg(t) = e2(:=3)(ef 4 1) = 2! 4 e2(*=3), One part grows
fromt = 0, one part grows fromh = 3 as before.

Solve these differential equations starting/ét) = 2:
@y —y=0(t—-2) (b)y' +y=0(—-2). (Whatisy?)
Solution (a) ¥y’ —y = §(t — 2) starts withy(t) = y(0)e* = 2¢* up to the jump at
t = 2. The jump brings another term ingdt) = 2et + e*~2 fort > 2. Note the jump
ofel=2 =1latt =2.
(b) ¥y’ +y = 6(t — 2) starts withy(t) = y(0)e™* = 2e~* up tot = 2. The jump
of 1 att = 2 starts another exponentiat (‘~2) (decaying because = —1). Then
y(t) =2t + e~ (=2,
Solvedy/dt = H(t — 1) 4+ 6(¢t — 1) starting fromy(0) = 0: jump and ramp.
Solution Nothing happens angl(t) = 0 until ¢t = 1. ThenH (¢t — 1) starts a ramp
in y(¢t) and there is a jump frond(t — 1). Soy(t) = ramp + constant =
max(0,t —1) + 1.
(My small favorite) What is the steady statg, fory’ = —y +d6(t — 1) + H(t — 3) ?
Solution dy/dt = 0 at the steady statg,;. Then—y + §(t — 1) + H(t — 3) is
~Yoo + 0+ 1 andye, = 1.
Which ¢ andy(0) in ¥’ — 3y = ¢(¢) produce the step solutiaf{t) = H(t — 1) ?
Solution We simply substitute the particular solutig(t) = H (¢t — 1) into the original
differential equation withy(0) = 0):
§(t—1)—3H(t—1) =q(t)

Notice hows (¢t — 1) in ¢(t) produces the jum@l (¢t — 1) iny, and then-3H (¢t — 1) in
q(t) cancels the-3y and keepsly/dt = 0 aftert = 1.
Problems 2631 are about exponential sourcegt) = Qe and resonance.
Solve these equations — ay = Qe as in (19), starting from y(0) = 2:
@ y —y=8e3 () v +y =83 (What isy. ?)
Solution

(@ a=1,c=3 and y(0) =2 (b) a=—1,c=—-3 and y(0) =2

ct at —3t t

y(t) = y(0)e +8—— y(t) = y(0)e +8———
o3t _ ot o3t _ ot
t) =2 8 t el +8—-—+—
() = 26! + 85— i) =248 E
y(t) = 2t + 4(e3t — et) y(t) = —4(e3t — et
y(t) = 4e3 — 2¢t y(t) = 46’3t +2e7t

y goes too ast — oo y goes td) ast — oo
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27 Whenc = 2.01 is very close tar = 2, solvey’ — 2y = et starting fromy(0) = 1. By
hand or by computer, draw the graphydt) : near resonance.

Solution We substitute the values= 2,¢c = 2%01 a|;1d y(0) = 1 into equation (18):
e — e
y(t) = y(0)e +

y(t)
y(t) =
y(t) = 1012 — 100201t

The graph of this function shows the “near resonance” when.

28 Whenc = 2 is exactly equal ta = 2, solvey’ — 2y = ¢?! starting fromy(0) = 1.
This is resonance as in equation (20). By hand or compuiay tire graph of(¢).
Solution We substituter = 2, ¢ = 2 (resonance) angl(0) = 1 into equation (19):

y(t) = y(0)e™ + te® = e 4 te?.

29 Solvey’ + 4y = 8e~4* + 20 starting fromy(0) = 0. What isy ?

Solution We havea = —4,¢ = —4 and y(0) = 0. Equation (19) with resonance

leads to8te—4!. The constant source0 leads to20(e~* — 1). By linearity
y(t) = 8te=* +20(e~* — 1). The steady state i, = —20.

30 The solution toy’ — ay = et didn’t come from the main formula (4), but it could.
Integratee~%%e“¢ in (4) to reach the very particular solutiger! — ¢%)/(c — a).

—a
6215 _ 62.0115
2.01-2
t + 100(8225 _ 62.0115)

2eat +
82
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31

32

33

34

35

Solution

— eaty(o) + eat efaTechT

O — O~

_ eaty(o) + eot €(C7G)TdT

(c—a)t _ 0
= ey (0) + e (*e ¢ )

e — €
= eaty(o) + Te—a = Yn + Yup
The easiest possible equatigh= 1 has resonanck The solutiony = ¢ shows the
factort. What number is the growth rateand also the exponenin the source ?

Solution The growth rate iy’ = 1 or dy/dt = ¢ is a = 0. The source ig**
with ¢ = 0. Resonancer = c. The resonant solution(t) = te®* isy = t, certainly
correct for the equatiody /dt = 1.

Suppose you know two solutiogs andys, to the equationy’ — a(t)y = q(t).

(@) Find a null solutiontg’ — a(t)y = 0.
(b) Find all null solutionsy,,. Find all particular solutiong,,.

Solution (a) y = y1 — y2 will be a null solution by linearity.

(b) y = C(y1 —y=) will give all null solutions. Thery = C'(y1 — y2) + y1 will give all
particular solutions. (Alsg = c¢(y1 — y2) + y2 will also give all particular solutions.)

Turn back to the first page of this Section 1.4. Without logkican you write down a
solution toy’ — ay = q(t) for all four source functiong, H (t),d(t), et ?

Solution Equations (5), (7), (14), (19).

Three of those sources in Probléd® are actually the same, if you choose the right
values forg andc andy(0). What are those values ?

Solution The sourceg = 1 andg = H(t) andgq = € are all the same far> 0.

What differential equationg’ = ay+q(t) would be solved by (t) andyz(¢) ? Jumps,
ramps, corners—maybe harder than expected{.mit.edu/dela/Pset1.4).

y1(t)
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Solution (a) % =1-6(t—1)—6(t—2)witha = 0.
(b) % =ys+ luptot = 1. Add in —2e (¢t — 1) to drop the slope from to —e at
t = 1. Aftert = 1 we needdy,/dt = —y2 — 1 to keepys = 2t — 1.

Problem Set 1.5, page 37

Problems 1-6 are about the sinusoidal identity (9). It is steed again in Problem 1

1 These steps lead again to the sinusoidal identity. Thisogmbr doesn’t start with
the usual formula cagut — ¢) = cos wt cos ¢ + sin wt sin ¢ from trigonometry.
The identity says:

If A+ iB = Re' then A coswt + B sinwt = Rcojwt — ¢).
Here are the four steps to find that real parRef(“*—%). Explain Ste whereR e~ ¢
equalsA — iB:

R cos (wt — ¢) = Re[Re'@=9)] = Re[e™!(Re )] = (whatisRe " ?)
= Re[(cos wt + i sin wt) (A —iB)] = A coswt + B sinwt.

Solution The key pointis that ifd + iB = Re' thenA — iB = Re~*¢ (the complex
conjugate).
2 To expressin 5t + cos 5t asR cos (wt — ¢), what areR and¢ ?

Solution The sinusoidal identity had = 1, B =1, and w = 5. Therefore:
R?=A2+B?>=2— R=+/2 and tan¢ = % —¢= % Answer v/2 cos (515— g) .
3 To expres$ cos 2t + 8 sin 2t asR cos (2t — ¢), what areR and tanp and¢ ?
Solution Use the Sinusoidal Identity with = 6, B =8 and w = 2.
R*=A?+B?>=62+82=100 and R =10

tang = £ =8 =2 and ¢ isin the positive quadrand to Z ( not m to 3&)
4
6 cos(2t) + 8sin(2t) = 10 cos (Qt — arctan (§ )

4 Integratecos wt to find (sin wt)/w in this complex way.
() dyreay/dt = coswt is the real part oflycomplex/dt = et

(i) Take the real part of the complex solution.

wt

Solution (i) The complex equatiop’ = e** leads toy = °c_
w
(i) Take the real part of that solution (since the real péthe right side isos wt).
et [coswt sinwt]
- +

sin wt
Re— == Re .
w

1w w w
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5 The sinusoidal identity fod = 0 and B = —1 says that- sinwt = Rcos(wt — ¢).
Find R and¢.

Solution p2 — A2 4 B2=02412=1—R=1
tang =+ =00 — ¢ =73 or 2L : Hereitis 3T,
Therefore we have
SOLUTION: — sinwt = cos(wt — )
CHECK: t =0 gives 0 = 0,wt = 7 gives —1 = —1.

since A +iB = —i

6 Why is the sinusoidal identity useless for the sour@@ = cos ¢ + sin 2¢?

Solution The sinusoidal identity needs the samn all terms. But the first term has

w = 1 while the second term has= 2.
7 Write 2+ 3i asre’?, so thatz; = Le~'?. Then writey = /' /(2+3i) in polar form.

Then find the real and imaginary partsofAnd also find those real and imaginary parts
directly from(2 — 3i)e™* /(2 — 3i)(2 + 3i).
Solution r =+/22 4+ 32 = /13 and ¢ = arctan(3/2)
24 3i = \/ﬁei arctan(3/2)
y = eiwt/(2 + 32) _ \/ﬁei arctan(3/2)+iwt
Writing this in cartesian (rectangular) form gives
real part= /13 cos(arctan(3/2) 4 wt) = 2 cos(wt) — 3 sin(wt)
imag part= /13 sin(arctan(3/2) + wt) = 3 cos(wt) + 2 sin(wt)
We can also find the real and imaginary parts from:
(2—3i)e™  2-3i ;, 2—3i

w

2-3)(2+3i) 13 * 13

(cos(wt) + i sin(wt)).

8 Write these functionsl coswt + B sinwt in the form R cos(wt — ¢) : Right triangle
with sidesA, B, R and angles.

(1) cos3t —sin 3t (2) V/3cosmt — sint (3)3cos(t — @) + 4sin(t — ¢)

Solution (1) cos3t — sin3t = V2 cos(3t — ) = V2 cos(3t + I).

Checkt = 0: 1= v2cos(—ZF) = v2cos(%).

(2) V3coswt —sinmt = 2cos(mt + ).

Check:(v/3)2 4+ (-1)2=22 At t=0:+/3=2cos30°.

(3) 3cos(t — ¢) +4sin(t — ¢) = 5cos(t — ¢ — tan~' 3).
Problems 9-15 solve real equations using the real formula §3or M and N.

9 Solvedy/dt = 2y + 3 cost + 4 sint after recognizing: andw. Null solutionsCe?t.
Solution % =2y + 3cost + 4sint = 2y + 5cos(t — ¢) with tan¢ = 3.
Method 1: Look fory = M cost + N sint.

Method 2: SolvelX = 2Y + 5¢i(*=%) and thery = real part ofY.

Y = FSoetlt=9) = 2(—i —2)et=%) and y = —2cos(t — ¢) + sin(t — ¢).
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10 Find a particular solution tdy/dt = —y — cos 2t.
Solution Substitutey = M cost + N sint into the equation to find/ and N

—Msint + N cost = —M cost — N sint — cos 2t

Match coefficients ofost andsin ¢t separately to find/ andN.

. 1
N=-M-1and —M=-N glveM:N:—5

Note: This is called the “method of undetermined coeffig&ir Section 2.6.
11 What equationy’ — ay = A coswt + Bsinwt is solved byy = 3 cos 2t + 4 sin 2t ?
Solution Clearlyw = 2. Substitutey into the equation:
—6sin 2t + 8 cos 2t — 3a cos 2t — 4a sin 2t = A cos 2t + B sin 2t.
Match separately the coefficientsafs 2¢ andsin 2¢:
A=8-3a and B=—6 —4a
12 The particular solution tg’ = y + cost in Section 4 iy, = e’ [ e™* cos sds. Look
this up or integrate by parts, frogn= 0 to t. Compare thig, to formula (3).

Solution That integral goes frorfi to ¢, and it leads tgy, = %(sint — cost +et)

If we use formula (3) withu = 1,w =1,A =1, B = 0 we get
_aA—i—wB_—_l N_wA—aB_l

w24+a2 2 T ow24a2 2

. . - t int . . . .
This solutiony = M cost + N sint = %ﬁLsm is a different particular solution

(not starting fromy(0) = 0). The difference is a null solutiofe’.
13 Find a solutiony = M cos wt + N sin wttoy’ — 4y = cos 3t + sin 3t.

Solution Formula (3) witha = 4,w = 3, A = B = 1 gives
4437 o 3—-4 1
9+16 25 9416 25
14 Find the solution ta)’ — ay = A cos wt + B sin wt starting from y(0) = 0.
Solution One particular solutiod/ coswt + N sinwt comes from formula (3). But
this starts fromy,,(0) = M. So subtract off the null solutiog, = Me®* to get the very
particular solutiory,, = y, — y» that starts fromy,, (0) = 0.
15 If a = 0 show thatM andN in equation (3) still solvey’ = A cos wt + B sin wt.
Solution Formula (3) still applies witlw = 0 and it gives
wB wA B A .
M=—-——— = — Yy = —— coswt + — sinwt.
w? w? w w
This is the correct integral o coswt + Bsinwt in the differential equation.
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Problems 16-20 solve the complex equatiop’ — ay = Re*«t—%),
16 Write down complex solutiong, = Ye'* to these three equations:
@y’ —3y=5¢*" (b)) y' =R () y' =2y~

Solution (a) y’ — 3y = 5e%* hasiw Ye™? — 3Ye™*t = 5e2%,

_ _ _5
Sow =2andY = 5.

(b) y' = Re't=9) hasiwYe™! = Re!“t=9) SoY = Le~i¢ and the solution is
y = Yeiwt — R ei(wtfqb)_

iw
(€) y' =2y —e hasw =1and iYe® = 2Yei — e,

ThenY = =% = ;L = ZH andy = Ye''.

17 Find complex solutions, = Ze™* to these complex equations:
(@)z' 4+ 4z = &3 (b) 2’ + 4iz = &3 (©) 2" 4+ 4iz = eB
Solution (a)z’ 4 4z = €®* has z = Ze%* with 8iZ +4Z =1 and Z = L =

118i
4-8i _ 11 _ o
16164 50 (1 — 2i).

(b) 2’ + 4iz = €' is like part (a) butt changes tdi. ThenZ = = = ; = —

(€) 2’ +4iz = €® has z = Ze8'. Then 8Ze% + 4iZe® gives Z = oz = S5

=

18 Start with the real equatioyf —ay = R cos (wt — ¢). Change to the complex equation
2! —az = Re'™@t=%). Solve forz(t). Then take its real past, = Rez.

Solution Putz = Ze'“!=%) in the complex equation to find:
iwZ —aZ = R givesZ = R — = R(-a—iw)
—a +iw a? + w?

The real part ot = Z(cos(wt — ¢) + isin(wt — ¢)) is
s (—a cos(wt — ¢) + wsin(wt — ¢)).

19 What is the initial valuey,(0) of the particular solutiony, from Problem 187
If the desired initial value isy(0), how much of the null solutiony,, = Ce*
would you add tay, ?

Solution That solution to 18 starts from),(0) = szz(—a cos(—¢) +wsin(—¢)) at

t = 0. So subtract that number time¥' to get the very particular solution that starts
from y,,(0) = 0.

20 Find the real solution tg’ — 2y = cos wt starting fromy(0) = 0, in three steps: Solve
the complex equatior’ — 22 = ¢! takey, = Rez, and add the null

solutiony,, = Ce?* with the rightC.

Solution Step 1.z’ — 27 = e™! is solved byz = Ze™* with iwZ — 27 = 1 and
1 —2—iw

7= =35 = drer

Step 2. The real part ofe“! is y,, = 2 (—2 coswt + wsinwt).

Step 3. y,(0) = 1722 SOy, = Yp + ze>" includes the righty,, = Ce* for
Yup(0) = 0.
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Problems 21-27 solve real equations by making them complekirst a note on .

Example 4 wag;’ — y = cost — sint, with growth ratea = 1 and frequency = 1.
The magnitude ofw — a is v/2 and the polar angle hasna = —w/a = —1. Notice:
Botha = 37/4 anda = —7/4 have that tangeritHow to choose the correct anghe?

The complex numbetv — a = i — 1 is in thesecond quadrantts angle isx = 37 /4.
We had to look at the actual number and not just the tangent ofts angle

21 Findr anda to write eachiw — a asre’. Then writel /re'™ asGe ™.
@v3i+1 (B)V3i—-1 (©)i—+3
Solution (a) v/3i + 1 is in the first quadrant (positive quarter< ¢ < r/2) of the
complex plane. The angle with tangeri$ /1 is 60 © = /3. The magnitude of/3i + 1
isT = 2. Theny/3i + 1 = 2ei™/3.
(b) V/3i — 1is in the second quadrany2 < § < =. The tangent is-/3, the angle is
6 = 27/3, the number iRe?™*/3,
(c) i — /3 is also in the second quadrant (left from zero and up). Nowtdhgent
is —1/+/3, the angle i¥) = 150° = 57/6. The magnitude is stil2, the number is
9257/6

22 UseG anda from Problem 21 to solve (a)-(b)-(c). Then take the real pamach
equation and the real part of each solution.
@y +y=eV" () y' —y=eV (0)y —VBy ="
Solution (a) ' 4+ y = €'V3! is solved byy = Ye'V3 wheni/3Y +Y = 1. Then

= \/51“ = Le~™/3 from Problem 21(a). The real pat.., = & cos(v/3t — 7/3)

of YeiV3t solves the real equatiay.,, + yreal = cos(v/3t).
(b) y'—y = "3 is solved by = Ye!V3 wheniv/3Y —Y = 1. ThenY = Le=2m/3
from Problem 21(b). the real payte.; = %cos(\/gt — 27 /3) solves the real equation
yr/eal — Yreal = COS(\/gt)‘
(c) y' — V3y = €' is solved byy = Ye'* wheniY —/3Y = 1. ThenY =
1e=571/6 from Problem 21(c). The real paytc. = 3 cos(t — 57/6) of Ye' solves
Yreal — \/gyrcal = cost.

23 Solvey’ — y = cos wt + sin wt in three steps: real to complex, solve complex, take
real part. This is an important example.
Solution Note: | intended to choosew = 1. Theny’ — y = cost + sint has the
simple solutiony = —sint. | will apply the 3 steps to this case and then to the harder
problem for anyw.

(1) Find R and¢ in the sinusoidal identity to write cag + sin wt as the real part of
Re'«@t=%) This is easy for any.

1
tanqS:I o) ¢:% cos wt + sin wt = v/2 cos (UJt_Z)

(2) Solvey’ —y = €™ by y = Ge ™', Multiply by Re~** to solve

2! — 2z = Reiwt=9)



1.5. Real and Complex Sinusoids 19

24

25

26

27

w=1 y'—y=e"hasy=Ye" withi¥ —Y =1. ThenY = -5 = %637”'/4 =
Ge™ i,

z = (V2eilt=m/4) (%63”/4) = eite™/2 = je', The real part ok isy = — sin t.
An ! w! |leads toiwY — Y = 1 andY 1 ! —ia
w —y=ce wY —Y = = = e

yw y' -y PO B ey

with tana = w. Thenz(t) = (1+w2 e_w‘) (V2eiwt=m/9)),

(3) Take the real panf(t) = Rez(t). Check thaty’ — y = cos wt + sin wt.

y(t) = Rez(t) = —2; cos(wt — o — 7). Now we needana = w,cosa = \/117,

14+w?
sino = —=—. Finallyy = 1r;2 [cos(wt — T) cos a + sin(wt — F ) sin a.

Solvey’ — /3y = cos t + sin ¢ by the same three steps wiih= /3 andw = 1.
Solution (1) cost +sint = v/2cos(t — Z).

(2) y=Ye withiY —/3Y =1 andY = Flﬁ = ¢757/6 from 1.5.21(c).
Thenz(t) = (v2e't=™/9)(Le=5m/6),

(3) Thereal partof(t) isy(t) = % cos(t — ).

(Challenge) Solve y’ — ay = A cos wt + B sin wt in two ways. First, find
R and ¢ on the right side andr and« on the left. Show that the final real solution
RG cos (wt — ¢ — «) agrees withM cos wt + N sin wt in equation (3).

Solution The first way hask = v/ A2 + B? andtan¢ = B/A from the sinusoidal
identity. On the left sidé /(iw—a) = Ge~'* from equation (8) withtG' = 1/v/w? + a2
andtan a = —w/a. Combining, the real solution is= RG cos(wt — ¢ — «).

This agrees withy = M coswt + N sinwt (equation (3) gived/ andN).

We don't have resonance fgr — ay = Re™? whena andw # 0 are real.Why not?
(Resonance appears whgn= Ce*" andy, = Ye share the exponent= c.)

Solution Resonance requires the exponentdiw to be equal. For real this only
happens it = w = 0.

If you took the imaginary parf = Im z of the complex solutionte’ —az = Re*“t=9),
what equation woulg(¢) solve ? Answer first witlp = 0.

Solution Assuminga is real, the imaginary part af —az = Re'(“*=9) is the equation
y' —ay = Rsin(wt — ¢). With ¢ = 0 thisisy’ — ay = Rsinwt.

Problems 28-31 solve first order circuit equations: not RLC lut RL and RC.

V coswt L R V coswt
‘_@AVW_' 7

current/ (t) q(t) = integral of I(¢)
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28 SolveL dI/dt + RI(t) =V cos wt forthe current/ (¢) = I,, + I, in the RL loop.

Solution Divide the equation by, to producell /dt—al = X coswt witha = —R/L
andX = V/L. In this standard form, equation (3) gives the real solution

. X X
I = Mcoswt+ Nsinwt With M = ——2 _ and N = —=
w2+a2 w2+a2

29 With L = 0 andw = 0, that equation is Ohm’s Law” = IR for direct current.
Thecomplex impedanceZ = R + iwL replacesk whenL # 0 and(t) = Ie™*.

LdI/dt+ RI(t) = (iwL + R)Ie®t = Vet gives ZI=1V.

What is the magnitudeZ| = |R + iwL|? What is the phase angle i = |Z|e?® ?
Is the current!| larger or smaller because bf?

Solution |Z]| = VR* +w?L? and tanf = <.

Since|Z| increases witt., the current!| must decrease.

d 1
30 SoIveRd—Z + EQ(t) =V cos wt for the charge(t) = ¢, + ¢, in the RC loop.

Solution Dividing by R producesil —ag = X coswt with a = —7~ and X = ¥.

As in Problem 28, equation (3) givédg andN fromw and this a.

31 Why is the complex impedance no®% = R + ﬁ? Find its magnitudeZ|.
Note that mathematics prefersi = +/—1, we are not conceding yettg = /—1!
Solution The physicalRC equation for the curreni = % is RI + % [Idt =
V coswt = Re(Velt).

The solution! has the same frequency factéie™*, and the integral has the factor
e™* /iw. Substitute into the equation and match coefficientsof:

RX + 1. X =Vis ZX = V with impedanceZ = R + L.

Problem Set 1.6, page 50

1 Solve the equatiody/dt = y + 1 up to timet, starting fromy(0) = 4.

Solution We use the formulg(t) = y(0)e* + 2(e* — 1) witha = 1 ands = 1 and
y(0) =4:
y(t) =4e' +e' —1=>5e" — 1

2 You have$1000 to invest at rater = 1 = 100 %. Compare after one year the result of
depositingy(0) = 1000 immediately with no sources(= 0), or choosing,(0) = 0 and
s = 1000/year to deposit continually during the year. In both caighlt = y + q.

Solution We substitute the values for the different scenarios intssthlution formula:
y(t) = 1000e = 1000e at one year
y(t) = 1000’ — 1000 = 1000(e — 1) at one year

You get more for depositing immediately rather than durhmgyear.
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3 If dy/dt = y — 1, when does your original deposit0) = % drop to zero?

Solution Againwe use the equatigyit) = y(0)e® +2(e**—1) with a =1 and s =
—1. We sety(t) = 0 and find the time :

y(t) =y(0)e' —e' +1=¢'(y(0)—1)+1=0

1
el=—"—=2andt=1In2.
1—y(0)
Notice! If y(0) > 1, the balance never drops to zero. Interest exceeds spending

d . .
4 Solved—:g =y +t2 fromy(0) = 1 with increasing source teri.

Solution Solution formula (12) withe = 1 andy(0) = 1 gives
t

y(f)Zet—i—/et_sszds:et—t(t+2)+26t—2:36t_t(t+2)_2
0

d
Check:d—z =3¢’ +2t — 2 equalsy + t°.

d . .
5 Solved—gtl =y + ¢! (resonance = ¢!) from y(0) =1 with exponential source’.

Solution The solution formula witl, = 1 and source! (resonance!) gives:
t t

y(t) = e + /etfsesds =e'+ /etds =e'(1+1)
0 0

d
Check by the product rulec:l—?; =e'(1+t)+e' =y+e.

6 Solve% = y — t% from an initial deposity(0) = 1. The spending(t) = —t? is

growing. When (if ever) doeg(t) drop to zero ?

Solution
t

y(t) = et — /etfsszds =e' 4 t(t+2) — 2e" +2 = —e' +t(t + 2). This definitely
0
drops to zero (I regret there is no nice formula for that tine

d
Check:d—i = el 42t 42=9y—t%.

d _— . . .
7 Solved—‘z =y — ¢! from an initial deposity(0) = 1. This spending term-et grows at

the same:! rate as the initial deposit (resonance). When (if ever) dadr®p to zero ?
t t
Solution y(t) = et — /et_sesds =e' - /etds =e'(1 —t) (this is zero att = 1)
0 0

Check by the product rule® = ef(1 —t) — ¢! = y — €'
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8 Solve% =y —e? fromy(0) = 1. Atwhat timeT is y(T) = 0 ?
t t
Solution y(t) = et — /et_sezsds =e' - /et+sds =elfef(1—el) =2e" — e
0 0
This solution is zero whee! = ¢?* and2 = e andt = In 2.
Check thaty = 2¢! — e?* solves the equation .j%’ =2t — 2e% =y — %,
9 Which solution § orY) is eventually larger ify(0) = 0 andY (0) =0 ?

dy ay
— = 2t or — =2Y +¢t.
at YT dt +
Solution p iy
y = _— =
Y + 2t o 2Y 4+t
t t
y(t) = /et_s - 2sds Y(t) = /th_zs - sds
0 0
e2t — 1
y(t) =2(=t+et —1) Y(t) =

In the long runY () is larger thany(t), since the exponent is larger thart.

10 Compare the linear equatigri = y to the separable equatigrf = y? starting from
y(0) = 1. Which solutiony(t) must grow faster ? It grows so fast that it blows up to
y(T) = oo at what timeT" ?

Solution
dy _ dy _
Ccllt Ccllt
Y Y at
Yy Yy
y(t)d t y(t)d t
U U
y(0) 0 y(0) 0
In(y(t)) —In(y(0)) =t ——t— =1
(v(2)) — In( <(t>)> oA

Y t

= =e y(t) = =

y(0) ﬁ -t 1—t

y(t) =y(0)e* = e’
The second solution grows much faster, and reaches a Versigaptote ai” = 1.

11 Y’ = 2Y has a larger growth factor (because= 2) thany’ = y + q(t).
What sourcey(t) would be needed to keegt) = Y (¢) for all time ?

Solution %’ =2Y + 1 with forexampleY (0) = y(0) =0

t
2
-1
Y(t) = /th*QSdS =
0

2
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12

Put this solution intd} =y + q(t) :

2t
-1
e = = +q(t)
6275 + 1
=q(t
5 q(t)
Starting fromy(0) = Y (0) = 1, doesy(¢) or Y (t) eventually become larger ?
dy . dy o
dt—?y—i—e t—Y—i—e .
- d
Solution ay _ 2 + et

dt

t
y(t) = e2t 4 /€2t—2363d5 — 2 4 o2t ot — 92t _ ot
0
Solving the second equation:
dy
- Y 2t
dt e
t
Y(t) = et + /et*SeQSds =ef +e* — ¢! = ¢e* is always smaller thany(t).

0

Questions 13-18 are about the growth factoG (s, t) from time s to time ¢.

13

14

15

What is the factof= (s, s) in zero time ? Find7(s,00) if a = —1 and ifa = 1.

Solution The solution doesn’t change in zero time G¢s,s) = 1. (Note that the
integral ofa(t) fromt = stot = s is zero. TherG(s,s) = ¢° = 1. We are talking
about change in the null solution, with = a(t)y. A source term with a delta function
does produce instant change.)

If « = —1, the solution drops to zero at= co. S0G(s, o) = 0.
If a = 1, the solution grows infinitely large ds— co. S0G(s, 00) = oo.

Explain the important statement after equation (1Bhpe growth factoiGG(s, t) is the
solution toy’ = a(t)y + §(t — s). The sourcé(t — s) depositsh1 at times.

Solution When the source terd(t — s) deposits $1 at time, that deposit will grow
or decay toy(t) = G(s,t) at timet > s. This is consistent with the main solution
formula (13).

Now explain this meaning of(s, t) whent is less thars. We go backwards in time.
Fort < s, G(s,t) is the value at time that will grow to equall at times.

Whent = 0, G(s, 0) is the “present value” of a promise to p&yat times. If the inter-
est rate isa = 0.1 = 10% per year, what is the present vald&s,0) of
a million dollar inheritance promised in= 10 years ?

Solution In fact G(t,s) = 1/G(s,t). In the simplest case’ = y of exponential
growth,G (s, t) is the growth factoe!~* from s tot. ThenG(t, s) ise*~t =1/e'~*.

That numbeiG(t, s) would be the “present value” at the earlier timef a promise to
pay $1 at the later time. You wouldn’t need to deposit the full $1 because your deposi
will grow by the factorG(s,t). All you need to have at the earlier timeligG(s, t),
which then grows td.
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16 (a) What is the growth facta® (s, ) for the equationy’ = (sin t)y + Q sin ¢ ?
(b) What is the null solution,, = G(0,t) toy’ = (sin ¢)y wheny(0) = 1 ?

t
(c) What is the particular solutiog), = [ G(s,t) Q sin sds ?
0

t
Solution (a) Growth factorG(s,t) = exp (/ sin TdT) = exp(cos s — cost).
(b) Null solution:y,, = G(0,t) y(0) = et=cost,
t
(c) Particular solutiony, = / eCos 58t O sin s ds
0
= Qe et [—e35]0 = @ (e!7°** — 1). Check y,(0) = Q(e® — 1) = 0.
17 (a) What is the growth facta® (s, t) for the equationy’ = y/(t + 1) + 10 ?
(b) What is the null solution,, = G(0,t)toy’ =y/(t + 1) with y(0) =1 ?

t
(c) What is the particular solutiog), = 10 [ G(s,t)ds ?
0

Solution (a) G(s,t) = exp [/ Td—fl] =exp[ln(t+1)—In(s+1)] = t+1 .

s+1

S

Null solutiony,, = G(0,t) y(0) = exp [In(t + 1)] = ¢t + 1 sinceln(0+ 1) = 0.

ds
s+1

t t
Particular solutiory,, = IO/exp [In(t +1) —In(s + 1)]ds = 10(t + 1)/
0

10(¢ + 1) In(t + 1).
18 Why isG(t, s) = 1/G(s,t) ? Why isG(s,t) = G(s, S)G(S, ) ?

Solution Multiplying G(s,t) G(t, s) gives the growth facto€(s, s) from going up
to time ¢ and back to times. This factor isG(s,s) = 1. SoG(t,s) = 1/G(s,t).
Multiplying G(s, S) G(S,t) gives the growth factofz (s, t) from going up froms to S
and continuing fron® tot. Inthe exampleg’ = y, thisise® et~ = et~ = G(s,1).

Problems 19-22 are about the “units” or “dimensions” in differential equations.

19 (recommended) Ifly/dt = ay + ge™?, with ¢ in seconds ang in meters, what are
the units fora andg andw ?
Solution a is in “inverse seconds”—for exampde= .01 per second.

¢ is in meters.
w is in “inverse seconds” or 1/seconds—for example: 27 radians per second.
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20 The logistic equationly/dt = ay — by? often measures the timein years (andy
counts people). What are the unitsacodndb ?

Solution a is in “inverse years"—for example = 1 percent per year.
bisin “inverse people-years” as in= 1 percent per person per year.

21 Newton’s Law ism d?y/dt?> + ky = F. If the massm is in grams,y is in meters,
andt is in seconds, what are the units of the stiffnessd the force ?

Solution ky has the same units asd?y/dt? sok is in grams per (secontl)
F is in gram-meters per (secord}-the units of force.

22 Why is our favorite examplg’ = y + 1 very unsatisfactory dimensionally ? Solve it
anyway starting frony(0) = —1 and fromy(0) = 0.

The three terms ig’ = y + 1 seem to have different units. The rate= 1 is hidden
(with its units of 1/time). Also hidden are the units of theisme termi.

Solution y(t) = y(0)e! +1(e* —1). Thisis e’ —1 if y(0) = 0. The solution stays at
steady state ify(0) = —1.

23 The difference equatiol,, 1 = cY,, + Q,, producesy; = cYy + Qo. Show that the
next step produces, = c?Yy + cQo + Q1. After N steps, the solution formula fafy
is like the solution formula foy’ = ay + q(t). Exponentials of: change to powers of
¢, the null solutiore®'y(0) becomes™ Y. The particular solution

t

Yn=c""1Qo+ - +Qn_1 islike y(t) = /ea(t_s)q(s)ds.
0
Solution Yz = ¢Y; + Q1 = ¢(cYy + Qo) + Q1 = ®Yo + cQo + Q1.

The particular solutior)y + @1 agrees with the general formula whéh= 2. The
null solutionc?Yj is Step 2 inYy, cYp, cYp, Yy, . . . like e@ty(0).

24 Suppose a fungus doubles in size every day, and it weighs adpafter10 days. If
another fungus was twice as large at the start, would it waigbund in5 days ?

Solution This is an ancient puzzle and the answe9 idays. Starting twice as large
cuts off1 day.

Problem Set 1.7, page 61

1 If y(0) = a/2b, the halfway point on th&-curve is att = 0. Show thatd = b and

()= o =
YW = de=at 55 beat +1

fromy_oo =010 Yoo = %. Mark the inflection point.

. Sketch the classi§-curve — graph ofl (e~ ¢ + 1)

Solution a

a a
d= band y(0) = — leadtod=— —-b=2b—-b=10
50) 0= z 1
a a a
Thereforey(t) — _ _a
ereforey(t) = o i T peet 15 b i1
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2 If the carrying capacity of the Earth I§ = a/b = 14 billion people, what will be the
population at the inflection point? Whatdg/dt at that point? The actual population
was?7.14 billion on Januaryt, 2014.

Solution The inflection point comes whege= a/2b = 7 million. The slopely/dt is

dy 2 @ a27a2 _ a\?

3 Equation (18) must give the same formula for the solutidt) as equation (16).
If the right side of (18) is called®, we can solve that equation fgr.

b b R
=R(1-- — 1+R-)y=R — = .
4 < ay> < a) Y Y (1 + R%)
Simplify that answer by algebra to recover equation (16)/{o}.

Solution This problem asks us to complete the partial fractions ntethbich inte-
grateddy/(y — ng) = adt. The result in equation (18) can be solved §dt). The
right side of (18) is calledr:

R = eat y(O) — eata y(O) — eatg.
1—2y(0) a —by(0) d
Then the algebra in the problem statement gives
R et . de~ a
= = = multiply b = .
YZTTRY T 14 entd PYDY Ge=at = Ge=ar b

4 Change the logistic equation t¢ = y + y>. Now the nonlinear term is positive,
andcooperation ofy with y promotes growth. Use = 1/y to find and solve a linear
equation forz, starting fromz(0) = 4(0) = 1. Show that(T) = co whene=7 = 1/2.
Cooperation looks bad, the population will explode at 7.

Solution Puty = 1/z and the chain rulé% = ;—Q% into the cooperation equation
y' =y+y
1 dz 1 n 1 ves dz 1
———— ==+ — — =—z—1.
22dt 2z 22 g dt
The solution starting from(0) = 1is z(t) = 2¢~* — 1. This is zero where T = 1
ore’ =20rT =1n2.

At that timez(T) = 0 meansy(7T") = 1/z(T) is infinite: blow-up at timel" = In 2.

5 The US population grew fromil 3, 873, 685in 2012 t0 316, 128,839 in 2014. If it were
following a logisticS-curve, what equations would give yaub, d in the formula (4) ?
Is the logistic equation reasonable and how to account forigration ?

Solution We need a third data point to find all three numberg, d. See Problem
(23). There seems to be no simple formula for those numbers. iGlgrtae logistic
equation is too simple for serious science. Immigrationdgive a negative value for
h in the harvesting equatiay = ay — by? — h.
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6 The Bernoulli equation 3’ = ay — by™ has competition termby™. Introduce
z = y'~™ which matches the logistic case when= 2. Follow equation (4) to
show that:’ = (n — 1)(—az + b). Write z(¢) as in(5)-(6). Then you have(t).
Solution We make the suggested transformation:

1-n

=Y
2= (1-n)y "y
92 — (1 - n)y~"(ay — by") = (1 —n)(ay' " —b)

4z — (1 —n)(az —b)

/

b d (1—n)at b
Z(t) _ e(lfn)atz(o) _ _(e(lfn)at _ 1) _ € +
aa a
d=az(0)—b=—= -0
AT

y(t) = de(1—n)at +b

Problems 7-13 develop better pictures of the logistic and haesting equations.

7 y' =y —y?is solved byy(t) = 1/(de~t + 1). This is anS-curve wherny(0) = 1/2
andd = 1. But show thay(t) is very different ify(0) > 1 or if y(0) < 0.

If y(0) = 2thend = 1 — 1 = —1. Show thaty(t) — 1 from above.
If y(0) = —1 thend = % — 1 = —2. AtwhattimeT is y(T) = —c0 ?

Solution First, y(0) = 2 is abovethe steady-state valug, = a/b = 1/1. Then
d=—%andy(t) = 1/(1 — 1e~") is larger thanl and approachegco) = 1/1 from
above ag ! goes to zero.

Secondy(0) = —1 is below theS—curve growing fromy(—oc) = 0 to y(co) = 1.
The valued = —2 givesy(t) = 1/(—2e~* +1). Whene~* equals; thisisy(t) = 1/0
and the solution blows up. That blowup timetis= In 2.

8 (recommended) Show tho8esolutions toy’ = y — y? in one graph! They start from
y(0) = 1/2 and 2 and —1. The S-curve climbs fromi to 1. Above that,
y(t) descends frora to 1. Below theS-curve,y(¢) drops from—1 to —co.

Can you see regions in the picture Dropin curves abovey = 1 and S-curves
sandwiched betweer® and 1 and dropoff curves belowy = 0.

Solution The three curves are drawn in Figure 3.3 on page 157. The gppers and
middle curves approacf,, = a/b. The lowest curves reagh= —oo in finite time:
blow-up.

9 Graphf(y) = y — y? to see the unstable steady state= 0 and the stabl@” = 1.
Then graphf(y) = y — y? — 2/9 with harvestingh = 2/9. What are the steady
statesY; andY;? The3 regions in Problem 8 now havg-curves abovey = 2/3,
S-curves sandwiched betwe&fi3 and2/3, dropoff curves belowy = 1/3.

Solution The steady states are the points whgre Y2 = 0 (logistic) andY” — Y2 —
2 = 0 (harvesting). That second equation factors ifito— £)(Y — 2) to show the

steady stateg andZ.
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10 What equation produces ahcurve climbing toy,, = K fromy_., = L?

Solution We can choosg’ = ay — by? — h with steady stated( and L. Then
aK —bK? —h = 0andaL — bL? — h = 0. If we divide by h, these two linear
equations give

G*K+L*1+1andb*1
h KL K L h KL
b K K b L L
Check: K——K2—1_———f0and L——L2—1_———:O
h L L h K K
11y =y -y — % =—(y— —) showscritical harvestingwith a double steady state
aty =Y = % The layer ofS-curves shrinks to that single line. Sketch a dropin

curve that starts aboyg0) = 1 and a dropoff curve that starts belgo) = 1

Solution The solutiontay’ = —(y — 3)? comes from integrating dy /(y — £ ) = dt
togetl/(y — 3) =t +C. Theny(t) =3+ 75 Ify(0) > § thenC > 0and
this curve approachegoco) = 5 itis a hyperbola coming down toward that horizontal
line. If y(0) < 1 thenC'is negatlve and the above solutlgn: + HC blows up
(or blows downI since is negative) at the positive time= —C This is a dropoff
curve below the horizontal ling = 3. (If y(0) = 3 the equation isly/d¢ = 0 and the
solution stays at that steady state.)

12 Solve the equatiop’ = —(y — 3)? by substitutingy = y — 3 and solvingy” = —v?.

Solution This approach uses the solutions we knovrizt¢dt —v2. Those solutions

arev(t) = H% Thenv =y — 5 g|ves the samg = 1 5+ t+c as in Problem 11.

13 With overharvesting, every curvg(t) drops to—oco. There are no steady states.
SolveY — Y2 —-h=0 (quadratic formula) to find only complex rootsdif, > 1.

The solutions fol: = 2 arey(t) = 1 — tan(t + C). Sketch that dropoff i = 0.
Animal populations don’t normally coilapse like this fromesharvesting.
Solution Overharvestingig’ = y — y? — h with h larger than}I (Problems 11and 12
hadh = i and critical harvesting) The fixed points come frdm- Y2 — h = 0. The
guadratic formula give¥ = (1 + /1 —4h). These roots are complex fbr>
No fixed points
Forh = £ the equationiy)’ =y —y?> -2 = —(y— 4)> — 1. Thenv =y —
hasv’ = —v? — 1. Integratingdv/(1 + v?) = —dt givestan 'v = —t — C or
v=—tan(t+C). y=v+ 3 = 1 — tan(t + C). The graph of- tant starts at zero
and drops to-oco att = /2.

. . . . . 1
14 With two partial fractions, this is my preferred way to find = , B =
T—S S—7T

1 B 1 N 1
(y—r)y—s) (y—r)(r—s) (y—s)(s—r)

Check that equation: The common denominatoron the ridlatis »)(y — s)(r — s).
The numerator should cancel the- s when you combine the two fractions.

PF2
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15

16

1 1 . . B
Separate—; and — into two fractions + .
y=—1 Y —y y—r y—s
Note When y approaches, the left side ofPF2 has a blowup factod /(y — r).
The other factorl /(y — s) correctly approached = 1/(r — s). So the right side
of PF2 needs the same blowupg@t= r. The first termA/(y — r) fits the bill.

Solution

I 1 A N B 1/2 1/2
-1 (y-y+1) y-1 y+1 y—1 y+1
1 1
The constants ared = = =——=-B
r—s 1—(-1) 2
1 1 A B 1 1 1 1
B = = —:———’ A: :—:—B
v -y (w-ly y—-1 'y y—-1 y r—s 1-0

Thethreshold equationis the logistic equation backward in time :

dy . dy
——Z = qy —by? isthe sameas —= = — be2.
T o= Wby

Now Y = 0 is the stable steady statel’ = a/b is the unstable state (why?).
If y(0) is below the threshold:/b then y(t) — 0 and the species will die out.
Graphy(t) with y(0) < a/b (reverseS-curve). Then graph(t) with y(0) > a/b.

Solution The steady states afy/dt = —ay + by* come from—aY + bY? = 0 so
againY = 0orY = a/b. The stability is controlled by thsign ofdf /dy aty = Y :

d
f = —ay+ by? tellshow y grows a = —a + 2by tells howAy grows

dy
y—0has¥ - 4 (sTABLE) v =2 has L — _aton (9) = a (UNSTABLE)
dy b dy b
TheS-curves go downward froi = a/b toward the lineY” = 0 (never touch).

(Cubic nonlinearity) The equation’ = y(1 — y)(2 — y) hasthree steady states
Y = 0,1,2. By computing the derivativelf /dy aty = 0,1,2, decide whether
each of these states is stable or unstable.

Draw thestability linefor this equation, to show(¢) leaving the unstabl&’s.
Sketch a graph that showst) starting fromy(0) = 4 and2 and3.

Solution y' = f(y) = y(1—y)(2—y) = 2y — 3y*> + 7> has slope% =2—6y+3y°.
Y =0 has &£ =2 (unstable)

S—curvesgoup fromY =0 toward Y =1
Y =1 has Z—J; = —1 (stable)

S—curvesfromY = 2 go down towardY =1
Y =2 has £ =2 (unstable)

<

0 1 2
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17 (a) Find the steady states of tG@mpertz equationdy/dt = y(1 — Iny).
Solution (a) Y(1 —InY) = 0 at steady stateE = 0 andY = e.
(b) Show that = Iny satisfies the linear equatiahy /dt = 1 — z.

Solution (b) z =Iny has% = %% =y(l—Iny)/y=1—lny=1-z.

(c) The solutiorz(t) =1 + e~ *(2(0) — 1) gives what formula fog(t) fromy(0) ?
Solution (c) 2’ = 1/z gives that:(¢). Then sety(t) = 1/z(t):
_ 1 -t
H)=[1+e (20 —-1)] ' = [1+e‘t (——1)] .
18 Decide stability or instability for the steady states of

(@) dy/dt =2(1—y)(1—e¥)  (b) dy/dt=(1—y*)(4—y?)
Solution (@) f(y) =2(1—y)(1—¢e¥)=0atY =1landY =0

&= —2ev(1—y) —2(1—¢")
AtY =1 & =—2(1-¢) > 0(UNSTABLE)  AtY =0 £ = —2(STABLE)
() fly) =1 —yH(A—y?) =0aty =1,-1,2,-2 L = —10y+ 4y

dy —
Y = 1gives{L = —6 (STABLE) Y = —1gives = 6 (UNSTABLE)
Y =2givesfL = 12 (UNSTABLE) Y = —2gives — —12 (STABLE)

19 Stefan’s Law of Radiation igy/dt = K (M* —y*). Itis unusual to see fourth powers.
Find all real steady states and their stability. Startiog i (0) = M/2, sketch a graph
of y(t).
Solution f(Y) = K(M* —Y*)equals) aty = M andY = —M (alsoY = +iM).

& = —AKY® = ~AKM3(Y = M is STABLE) £ — 4AKM?3(Y = —M is UNSTABLE)

The graph starting at(0) = M/2 must go upwards to approagltoo) = M.

20 dy/dt = ay — y® has how many steady stat&sfor a < 0 and thena > 0?
Graph those value¥ (a) to see gpitchfork bifurcatior—new steady states suddenly
appear ag passes zero. The graph¥fa) looks like a pitchfork.

Solution f(Y) =aY — Y3 =Y (a — Y?) has 3 steady stat&s = 0, /a, —+/a.

I =a-3y’equalsnaty =0, £ = -20aty = /aandy = —ya.
ThenY = 0is UNSTABLE andY = +./a are STABLE.

21 (Recommended) The equatialy/dt = sin y hasinfinitely many steady states
What are they and which ones are stable? Draw the stabitigyth show whether
y(t) increases or decreases whgf) is between two of the steady states.

Solution f(Y) =sinY is zero at every steady state= nr (0, 7, —m, 27, —27,...)
j—{j’ = cosY =1 (UNSTABLE forY = 0,2m, —27,4x,...)
=cosY = —1(STABLE forY =7, —m, 3w, —3m7,...)
Stability line e B I I B TS
-2 -7 0 T 27
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22

23

24

25

26

Change Problem 21 tdy/dt = (sin y)2. The steady states are the same, but now the
derivative of f(y) = (sin y)? is zero at all those states (becausey is zero). What
will the solution actually do ify(0) is between two steady states ?

Solution f(y) = (siny)? has% = 2sinycosy = sin 2y.

Now ﬁ = 0 at ALL THE STEADY STATESY = nn.

Since % d” = (siny)? is always positive, the solutiogp(t) will always increase toward
the next larger steady state.

We have an infinite stack &f—curves.

(Research projegtFind actual data on the US population in the years 1950, 1889
2010. What values of;, b, d in the solution formula (7) will fit these values? Is the
formula accurate at 2000, and what population does it préoti020 and 2100 ?

You could reset = 0 to the year 1950 and rescale time so that 3 is 1980.

Solution Resetting time give¥ = ¢(t — 1950). Rescaling gives(1980 — 1950) = 3
soc = llo. Thena, b, d depend on your data.

The graphs fromt = 1950 to 1980 will show 7' = (¢ — 1950) from 7" = 0 to 3.
If dy/dt = f(y), what s the limity(co) starting from each poing(0) ?

Solution
dy [y for y <1 has fixed pointsY = 0 and 2
dt 12—y fory>1

Slopef, = 1atY" = 0 (UNSTABLE). Slopeff. = —1aty = 2(STABLE),y(o0) = 2.

W@) )
40 é\ > Y Y

0 2 4

Fixed pointsy” = 0, 2, 4. Slope sj— 1,1, 1.

0,2,4 = STABLE, UNSTABLE, STABLE y(c0) = 0 if 5(0) < 2 andy(co) = 4 if
y(0) > 2.

(a) Draw a functionf(y) so thaty(t) approacheg(occ) = 3 from everyy(0).
Solution The right sidef(y) must be zero only &t = 3 which is STABLE.
Example:2¥ = f(y) = 3 — y has solutiong = 3 + Ce".

(b) Drawf(, ) so thaty(co) = 4 if y(0) > 0 andy(co) = —2if y(0) < 0.
Solution This requires” = 4, —2 to be stable an®” = 0 to be unstable.
Example:% = f(y) = —y(y —4)(y +2) NoticeL =8 at Y =0.

Which exponents: in dy/dt = y™ produce blowupy(T) = oo in a finite time ?
You could separate the equation inkg/y™ = dt and integrate frony(0) = 1.
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. d . 1=n
Solution —z = [ dt g|vesi/

=t + C. Theright side is zero at a finite time

t = —C. Theny blows up at that tim& n > 1.
If n = 1 the integrals givény = ¢ + C andy = ¢/*¢: NO BLOWUP in finite time.

Find the steady states @f/dt = y? — y* and decide whether they are stable, unstable,
or one-sided stable. Draw a stability line to show the findleg(co) from each initial
valuey(0).

Solution f(y) =y?>—y*=0aty =0,1,-1
0 atY = 0 (Double root off)
% —2y—4y =-2 atY = 1 (STABLE)
2 atY =—1 (UNSTABLE)
SinceY = —1 is unstabley(t) must go toward” = 0 if —1 < y(0) < 0.
SinceY = 1 is stabley(¢) must go toward” = 1if 0 < y(0) < 1.

<

—1 0 1
For an autonomous equatigit = f(y), why is it impossible fory(t) to be increasing

at one timef; and decreasing at another time?

Solution Reason: The stability line shows a movementyaf one direction, away
from one (unstable) steady state and toward another (stable) steady state. “One
direction” means thaj(¢) is steadily increasing or steadily decreasing.

Problem Set 1.8, page 69

1

Finally we can solve the exampilg /dt = y? in Section 1.1 of this book.
t

Y
d : o .
Start from y(0) = 1. Then/—‘g = /dt. Notice the limits ory andt. Find y(t).
)
1 0

Solution With those limits, integration gives-& + 1 = ¢. Then- = 1 — ¢ and
y(t) = 15

Start the same equatiofy/dt = y* from any valuey(0). At what timet does the
solution blow up ? For which starting valugg)) does it never blow up ?

i 1 1 . 1 1 0
Soluion 1 _ ¢ gives L — andy— y(0)
y  y(0) y  y(0) 1 —ty(0)

If y(0) is negative, the — ty(0) never touches zero far> 0: No blowup.

Solvedy/dt = a(t)y as a separable equation starting frgfd) = 1, by choosing
f(y) = 1/y. This equation gave the growth factG(0, t) in Section 1.6.

Solution ‘

i dy / . _ _
/ 5 O/Q(t)dt gives Iny(t) — Iny(0) = /a(t)dt

y(0) 0
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y(t) = y(0) exp / a(t)dt | = G(0,1) y(0)

4 Solve these separable equations starting fyon = 0

dy_ dy_m n
(a) prial (b) pria ki

t
Solution (a) / /tdt andIny—Iny(0) = t?/2 : Theny(t) = y(0) exp(t?/2).
y(0)

—-n m 1/(1=n)
(b) L = ¢myn has/ /tm dt and—ylin — " Theny = (ﬁtm“)
forn ;é 1.

dy 2 _ a(t)
5 SoIveE =a(t)y’ = 742 as a separable equation starting fro(@) = 1.

Solution dy

= = oy

1
1

+1= [ a(z)dx givesy =

t
% / a(x)dx (u and x are justintegration variablgs
0
1
; 0

7
1- /a(:c) dx
0
dy

6 The equationcﬁ =y + t is not separable or exact. But it is linear ane-

Solution We solve the equation by taking advantage of its linearity:

Givena = 1, the growth factor ig!. The source term i Therefore using equation
(14) gives:

¢
y(t):ety(O)—i—/ =Ssds = ely(0) —t +e' — 1.
0

Check:dy/dt = e'y(0) — 1+ ¢' does equaly + t.

. d . . . .
7 The equatlond—:g = % has the solutioly = At for every constanfl. Find this solution

by separatingd = 1/y from g = 1/t. Then integrately/y = dt/t. Where does the
constant4d come from ?

Solution We use separation of variables to find the constant
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dy dit
vt
/d_u [
y(l u 1 T
In(y) —In(y(1)) =In
Y _
y(1)
Yy —y(l)t

Therefore we find that the constastis equal toy(1), the initial value.
. . dy ct —ay

8 F hich berd is = =
or which numberd is — AT by

equation by finding a suitable functldﬁ(y, t)+ C(1).
Solution f(y,t) = At + by andg(y,t) = ct — ay

The equation is exactif5f = —5¢ andA = a.

an exact equation ? For thi4, solve the

We follow the three solution steps for exact equations.
1 Integratef with respect tay:

[ rwtrdy = [Car+byydy = aty+ 00 = Flw.o)

2 ChooseC(t) so that2- (F(y,t) + C(t)) = —g(y,t)
gt(Aty—i- by’ +C(t) = Ay+C'(t) = —ct + ay
C'(t) = —ct and C(t) = —%ctQ
3 We therefore have that:

dy _ 9(y,t)
at f(y,t)

is solved by F'(y,t) + C(t) = constant

1 1
Aty + §by2 - §Ct2 = constant
9 Find a functiony(t) different fromy = ¢ that hasly /dt = y?/t2.
Solution Using separation of variables:
dy/dt = y*/t?
dy/y* = dt/t?

y
du dzr
w? ) a2
y(to) to

1 1 _ 1 1
Ty Ty T TR

. —1
to =landy(to) =2give— oy + 5= —¢ +landy(t) = (; - 3) = 2
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10 These equations are separable after factoring the riglut $ides :

11

12

dy dy
Solve =2 =¢¥tt and =2 =yt t+1.
7 e gt yt+y+t+

Y t
. d
Solution (a)d_z = e¥e! and /e_ydyz /etdt
Yo to
—e Y e Y0 = et — gelo

eY =e Y0 — et 4 el

y = —Infe ¥ — et 4 el0]
(b)dy/dt = (y +1)(t + 1)
Y d t
Y
—_— = t+1)dt
= [+
Yo to

1My+1%dmm+4)=%ﬁz—ﬁ%+@—m):G

y+1=(yo+1)e”

. . d d
These equations are linear and separable: Sg%v& (y +4)cost andd—:g = yel.

Y t
. d
Solution (a)/ Y /costdt
y+4
Yo to
In(y +4) —In(yg + 4) = sint — sinty
y+4=(yo+4)exp(sint — sintg)

Y d t
(m/ﬁz/aﬁ
Yy
Yo to

Iny — Inyy = et — eto

y = yoexp(e’ —e')
Solve these three separable equations starting fi@mn= 1:

Yy t
. d d
Solution (a)d—:g = —4dty has/—y = /—4tdt
Y
1 0

Iny = —2t* and y = exp(—2t?)

Yy t
d d 11 1
() & — 43 has/—‘g:/tdt and —— + = = =t
Sy 2y° 2y 2
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1 1
N
v

1 —1/2 —1/2
y = (_z_tQ) =0 (1= 179)

Yo

t
dy 4dt

1 0
Iny=4In(1 +1¢) —4In(1) = 4In(1 + ¢)
y=@1+t)*
Check (14 t)% = 4(1 +1)(1 +1)% = 4y

t
Test the exactness conditio®g /8y = —af /0t and solve Problems 13-14.
13 Test the exactness conditio®g/dy = —af/Ot.
Solution (a) ¢ = —3t* —2y> hasdg/dy = -4y
=4ty + by? has —90f/0y = —4y : EXACT

Step 1 :/fdy = / (4ty + 6y%) dy = 2ty* +2y° + C(t)

Step 2:2 (2ty? + 2y° + C(t)) = 2y% + C'(¢).

This equals-g whenC'’(t) = 3t? andC(t) = ¢3.
Step 3: Solutiorty? + 2y3 + t3 = constant
Solution (b) g = —1 — ye'¥ hasdg/0y = —yte'¥ — e'¥
f=2y+te has—af /ot = —ytel¥ — et¥ 1 EXACT

Stepl:/fdy:/(2y—|—tety) dy =y* + e + C(t) = F(y,t)

Step 2: 2 (y2 + e + C(t)) = ye!¥ + C'(t) = —g whereC'(t) = 1
Step 3:C’(t) = 1 givesC(t) = t and the solution is
F(y,t) + C(t) = —yte!¥ — e*¥ 4 t = constant
14 Test the exactness conditio®g/dy = —af/Ot.
; d of .
Solution (a)g =4t —y and f =t — 6y have 3¢ = —1 = 3 EXACT

Stepl:/fdy:ty—3y2+0(t)

Step 2:2 (ty —3y*> + C(t)) =y + C'(t) = —g = y — 4t when C(t) = —2¢>
Step 3: Solutioty — 3y? — 2t2 = constant
Solution (b)g = —3t*—2y* and f = 4ty +6y? have 32 = —dy = -3 : EXACT

Step 1 :/ fdy = / (4ty + 6y%) dy = 2ty* + 2y + C(t)
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15

16

17

Step 2: 2 (2ty? + 2y° + C(t)) = 2y> + C'(t) = —g = 3t> + 2y when O’ = 3¢2
and C =3
Step 3: Solutiorty? + 2y3 + t3 = constant
dy y? .d Y .
Show thatE =5 is exact but the same equatua% =5 is not exact. Solve

both equations. (This problem suggests that many equatiecsme exact when mul-
tiplied by an integrating factor.)

; _ _ dg _ _af.
Solution ¢ = —y? and f = 2ty have 50 = -2y = —5;  EXACT
— _ 9, af
g =—yandf =2t have B_Z NOT EQUAL TO — 57
Solve the second form which is SEPARABLE

dy dt . 1
== ——= Iny =—=Int
/y / 5 gives Iny 5 o +C

Theny = ¢“t~1/2 is the same ag = ¢t /2.
The same solution must come from Steps 1, 2, 3 using the exawt f

Exactness is really the condition to solve two equationk thié same functiof/ (¢, y) :

oH oH Of  0g
By f(t,y) and i —g(t,y) can be solved |fa T

Take thet derivative ofo H/0y and they derivative of0 H/Jt to show that exactness
is necessarylt is alsosufficientto guarantee that a solutidii will exist.

Solution The pointis to see the underlying idea of exactness.

OH 0’H  of
OH 0*H dg

The cross derivatives dff are always equallF a function H solves both equations
then% must equal—g—z. So behind every exact equation is a functién exactness is
a necessary and also sufficient to fildwith 9H /0y = f and 0H /0t = —g.

. . d : . . .
The linear equa‘uo%% = aty + ¢ is not exact or separable. Multiply by the integrating

factore~ / @t 4t and solve the equation starting frayD).
Solution This problem just recalls the idea of an integrating factor :

d . 1
Ford—? = aty + q the factor isP = exp (— /at dt) = exp (—QatQ).

ThenP (% - aty) agrees with Py)’ = P& + 4B,

So the original equation multiplied b is 4 (Py) = Pgq.

t
Integrate both side®(¢)y(¢t) — P(0)y(0) = /P(t)q dt. Divide by P(t) to find y(t).
0
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Second order equationsF'(t,y,y’,y’’) = 0 involve the second derivativey”.
This reduces to a first order equation for ¢’ (not y) in two important cases:

I. Wheny is missing inF, sety’ = v andy” = v’. ThenF(t,v,v’) = 0.
dv  dvdy dv ( dv)

Il. Whent is missing inF, sety” = — = —— = y—. ThenF —
g V'S s T war Y v vy

See the website foreduction of order when one solutior(t) is known.

18 (y is missing) Solve these differential equations for= y’ with v(0) = 1. Then
solve fory with y(0) = 0.

Solution (@)y” +y’ = 0. Sety’ = v. Thenv’ + v = 0 givesv(t) = Ce~ .

Now solvey’ = v = Ce~t tofind y = —Ce~* + D.

Solution (b)2ty” —y’ = 0. Sety’ = v. Then2tv’ — v = 0 is solved by
d dt .

/—v = / % andlnv = In+/t + C andv = ¢v/t. Now solvey’ = v = ¢/t to find
v

Yy = clt?’/2 + co.

19 Bothy andt are missing iny”’ = (y’)2. Setv = y’ and go two ways :

d , 1 , ,
I. Solve " = 42 to findv = —— as in Section 1.1.
dt 11—t

dy 1 N O ) N B
Thensolvea_v_mtoflndy——T+§W|thy(O)_O.

d d )
II. Solvev = v? or == = v to findv = eV,
dy dy

dt
and—e~Y =t — 1: not the same solution as part | (?7?)
20 An autonomous equationy’ = f(y) has no terms that contain(t is missing).

Then@ =u(y) =é¥ gives/ e Ydy= /dt satisfyingv(0) = 1,4(0) = 0

Explain why every autonomous equation is separable. A nwor@mous equation
could be separable or not. For a linear equation we usuaylyL$& (linear time-
invariant ) when it is autonomous: coefficients are constant, not narwiith z.

. . . dy
Solution Every autonomous equation separates ifte—=~ = [ dt.

()

Linear equations can b% = a(t)y : Non-autonomous

LTI equations aredd—g = ay (linear and alsa is time-invariant=- autonomous).
21 my” + ky = 0 is a highly important LTI equation. Two solutions areswt and

sinwt whenw? = k/m. Solve differently by reducing to a first order equation for

y' = dy/dt = vwithy” = vdv/dy as above:

d . 1 1
mvd—v + ky = 0 integrates togmv2 + EkyQ = constantZ.
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22

For a mass on a spring, kinetic energywz plus potential energ%kgﬂ is a con-
stant energyt. What is £ wheny = coswt? What integral solves the separable
m(y")? = 2E — ky? ? 1 would not solve the linear oscillation equation this way.

Solution Withy’ = v andy” = vj—z, the equatiomny” + ky = 0 becomes
mvj—z + ky = 0. This isnonlinearbut separable Integratenv dv = —ky dy to get

1 1 .
§mv2 + §ky2 = constantE [Conservation of Energy]

If y = cos(wt) thenv = y’ = —wsin(wt) andE' is $m cos?(wt) + 3 Kw? sin®(wt).

1/2
Th bl tion(y)2 = 2E—ky? could be solved by ———— | dy =
e separable equation(y ) y-~ could be solve (2E—Ky2) Y

dt. The integral could lead toos ! y = wt andy = cos wt.

my" + ksiny = 0 is thenonlinearoscillation equation: not so simple. Reduce to a
first order equation as in Proble :

d : 1
mvd—v + ksiny = 0 integrates toimv2 — kcosy = constantE.
Y

With v = dy/dt what impossible integral is needed for this first order saiplarequa-
tion? Actually that integral gives the period of a nonlingaendulum—this
integral is extremely important and well studied even if oapible.

2
Solution Take square roots ifzflm (%) = Kcosy + FE.

m/2 1/2
Then separate intp——— dy = dt.
P %K cosy + E} 4
An unpleasant integral but important for nonlinear ostidia. Chapter 1 is ending
with an example that shows the reality of nonlinear difféiedrequations: Numerical
solutions possible, elementary formulas are often imptessi



